Algebra experts can answer this in a second

Algebra Level 2

a + b + c = 3 1 a + 1 b + 1 c = 5 \begin{aligned} a + b + c = 3 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 5 \end{aligned}

If a , b , c a,b,c are nonzero real numbers satisfying the above equations, find the value of

a b + a c + b a + b c + c a + c b . \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + \frac{b}{c} + \frac{c}{a} + \frac{c}{b}.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Nihar Mahajan
Oct 16, 2015

( a + b + c ) ( 1 a + 1 b + 1 c ) = a b + c b + b a + c a + b c + a c + 3 3 × 5 = a b + c b + b a + c a + b c + a c + 3 12 = a b + c b + b a + c a + b c + a c \begin{aligned} (a+b+c)\left(\dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c } \right) &= \dfrac { a }{ b } +\dfrac { c }{ b } +\dfrac { b }{ a } +\dfrac { c }{ a } +\dfrac { b }{ c } +\dfrac { a }{ c }+ 3 \\ \Rightarrow 3 \times 5 &= \dfrac { a }{ b } +\dfrac { c }{ b } +\dfrac { b }{ a } +\dfrac { c }{ a } +\dfrac { b }{ c } +\dfrac { a }{ c }+ 3 \\ \Rightarrow \boxed{12} &=\dfrac { a }{ b } +\dfrac { c }{ b } +\dfrac { b }{ a } +\dfrac { c }{ a } +\dfrac { b }{ c } +\dfrac { a }{ c } \end{aligned}

This is the kind of question that shows me that I'm not a expert. It took a half of a paper to answer this.

Marco Antonio - 5 years, 5 months ago

3 minutes?

Joel Yip - 5 years, 2 months ago

Log in to reply

I remember solving this in my mind within 5 seconds. It took me 1-2 minutes to type out the solution.

Nihar Mahajan - 5 years, 2 months ago

a b + c b + a c + b c + b a + c a = a + c b + a + b c + b + c a = 3 b b + 3 c c + 3 a a = 3 b + 3 a + 3 c 3 = 3 ( a b + a c + b c ) a b c 3 \begin{aligned} \frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\\=\frac{a+c}{b}+\frac{a+b}{c}+\frac{b+c}{a}\\=\frac{3-b}{b}+\frac{3-c}{c}+\frac{3-a}{a}\\ =\frac{3}{b}+\frac{3}{a}+\frac{3}{c}-3\\ = \frac{3(ab+ac+bc)}{abc}-3 \end{aligned} From 1 a + 1 b + 1 c = 5 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=5 ,we get: a b + a c + b c a b c = 5 a b + a c + b c = 5 a b c 3 ( a b + a c + b c ) = 15 a b c \begin{aligned}\frac{ab+ac+bc}{abc}=5\\ab+ac+bc=5abc\\ \rightarrow 3(ab+ac+bc)=15abc \end{aligned} Hence 3 ( a b + a c + b c ) a b c 3 = 15 a b c a b c 3 = 15 3 = 12 \dfrac{3(ab+ac+bc)}{abc}-3=\dfrac{15abc}{abc}-3=15-3=\boxed{12}

Miream Petrean
Oct 23, 2015

a/b+a/c+b/a+b/c+c/a+c/b=(b+c)/a+(a+c)/b+(a+b)/c=(3-a)/a+(3-b)/b+(3-c)/c=3(1/a+1/b+1/c)-3=3*5-3=12

Engki Mai Putra
Nov 17, 2015

Its my solution a/b +a/c +b/a +b/c +c/a +c/b =a(1/b+1/c) + b(1/a+1/c) + c(1/a+1/b) =a(5-1/a)+b(5-1/b) +c(5-1/c) =5a-1 +5b-1 +5c-1 =5(a+b+c)-3 =5*3-3 =12

William Isoroku
Oct 21, 2015

Just multiple the 2 equations

It was the easiest question

Manvendra Singh - 5 years, 7 months ago

Don't be over confident

Manvendra Singh - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...