An algebra problem by Abu Bakar Khan

Algebra Level 2

log 8 ( i i 2 + i + i 2432 + i 3616 ) = ? \large \log_8 \left(i^{i^2} + i + i^{2432} + i^{3616}\right) = \ ?

Notation: i = 1 i = \sqrt {-1} is the imaginary unit .

None of the rest 2 -1 1 3 -2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log 8 ( i i 2 + i + i 2432 + i 3616 ) = log 8 ( i 1 + i + ( i 4 ) 608 + ( i 4 ) 904 ) = log 8 ( 1 i + i + ( 1 ) 608 + ( 1 ) 904 ) = log 8 ( i + i + 1 + 1 ) = log 8 ( 2 ) = log 8 ( 8 3 ) = 1 3 \begin{aligned} \log_8 \left(i^{i^2} + i + i^{2432} + i^{3616} \right) & = \log_8 \left(i^{-1} + i + \left(i^4\right)^{608} + \left(i^4\right)^{904} \right) \\ & = \log_8 \left(\frac 1i + i + \left(1\right)^{608} + \left(1\right)^{904} \right) \\ & = \log_8 \left(-i + i + 1 + 1 \right) \\ & = \log_8 (2) = \log_8 (\sqrt[3]{8}) = \frac 13 \end{aligned}

Therefore, the answer is None of the rest. \boxed{\text{None of the rest.}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...