Some big numbers

Calculus Level 4

sin ( 101 x ) sin 99 x d x \large \int \sin(101x) \sin^{99} x \, dx

If the indefinite integral above equals sin ( a x ) ( sin x ) b k + C \dfrac{\sin(ax) (\sin x)^b}{k} + C where a , b a,b and k k are constants and C C is the arbitrary constant of integration, find a + b + k a+b+k .


The answer is 300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Kumar
Feb 27, 2016

I = sin ( 101 x ) sin 99 x d x = sin ( 100 x + x ) sin 99 x d x = sin ( 100 x ) ( cos x ) ( sin 99 x ) d x + cos ( 100 x ) sin 100 x d x I=\int { \sin\left( 101x \right) { \sin }^{ 99 }x } dx\\ =\int { \sin\left( 100x+x \right) { \sin }^{ 99 }x } dx\\ =\int { \sin\left( 100x \right) (\cos x{ )(\sin }^{ 99 }x) } dx+\int { \cos(100x{ )\sin }^{ 100 }x } dx

Now on using Integration By Parts for first integral and leaving the second integral as it is, we get

I = ( sin 100 x ) ( sin 100 x ) 100 cos ( 100 x ) sin 100 x d x + cos ( 100 x ) sin 100 x d x + c I = ( sin 100 x ) ( sin 100 x ) 100 + C I=\frac { \left( \sin100x \right) \left( { \sin }^{ 100 }x \right) }{ 100 } -\int { \cos(100x{ )\sin }^{ 100 }x } dx+\int { \cos(100x{ )\sin }^{ 100 }x } dx+c\\ \therefore \quad I=\frac { \left( \sin 100x \right) \left( { \sin }^{ 100 }x \right) }{ 100 } +\mathcal{C}

I considered sin ( 100 x ) \sin(100x) as frist function and ( cos x ) ( sin 99 x ) (\cos x{ )(\sin }^{ 99 }x) as second function while using integration by parts.

See here

Aditya Kumar - 5 years, 3 months ago

Log in to reply

Great ! But another solution can be wriring these sines using Euler's formulas (using exponentials...) and things will get clearer!

Mohammad Hamdar - 5 years, 3 months ago
Pi Han Goh
Apr 24, 2016

Another way to solve this question is to directly differentiate the expression sin ( a x ) ( sin x ) b k + C \dfrac{ \sin(ax) (\sin x)^b}{k} + C with respect to x x , by differentiation - chain rule ,

d d x 1 k [ sin ( a x ) ( sin x ) b ] = 1 k [ b sin ( a x ) ( sin x ) b 1 cos x + a cos ( a x ) ( sin x ) b ] = 1 k ( sin x ) b 1 [ b sin ( a x ) cos x + a cos ( a x ) sin x ] \begin{aligned}\dfrac d{dx} \dfrac1k \left [ \sin(ax) (\sin x)^b \right ] &=& \dfrac1k \left [b\sin(ax) (\sin x)^{b-1} \cos x + a \cos (ax) (\sin x)^b \right ] \\ &=& \dfrac1k (\sin x)^{b-1} \left [ b \sin(ax) \cos x + a \cos (ax) \sin x \right ] \\ \end{aligned}

Since the aforementioned expression is equal to sin ( 101 x ) sin 99 x \sin (101 x) \sin^{99}x , this suggest that ( sin x ) b 1 = ( sin x ) 99 b 1 = 99 b = 100 (\sin x)^{b-1} = (\sin x)^{99} \Rightarrow b -1 =99 \Leftrightarrow b = 100 . Continuing with our solution, we have

1 k ( sin x ) b 1 [ b sin ( a x ) cos x + a cos ( a x ) sin x ] = 1 k ( sin x ) 99 [ 100 sin ( a x ) cos x + a cos ( a x ) sin x ] \dfrac1k (\sin x)^{b-1} \left [ b \sin(ax) \cos x + a \cos (ax) \sin x \right ] = \dfrac1k (\sin x)^{99} \left [ 100 \sin(ax) \cos x + a \cos (ax) \sin x \right ]

Recall the compound angle formula, sin ( A ± B ) = sin A cos B ± cos A sin B \sin (A\pm B) = \sin A \cos B \pm \cos A \sin B , so to combine 100 sin ( a x ) cos x + a cos ( a x ) sin x 100 \sin(ax) \cos x + a \cos (ax) \sin x into a single expression, it is reasonable to assume that a = b = 100 a=b=100 .

1 k ( sin x ) 99 [ 100 sin ( a x ) cos x + a cos ( a x ) sin x ] = 1 k ( sin x ) 99 [ 100 sin ( a x ) cos x + 100 cos ( a x ) sin x ] = 100 k ( sin x ) 99 [ sin ( 100 x ) cos x + cos ( 100 x ) sin x ] = 100 k ( sin x ) 99 [ sin ( 100 x + x ) ] = 100 k ( sin x ) 99 [ sin ( 1001 x ) ] \begin{aligned}&& \dfrac1k (\sin x)^{99} \left [ 100 \sin(ax) \cos x + a \cos (ax) \sin x \right ] \\ &= &\dfrac1k (\sin x)^{99} \left [ 100 \sin(ax) \cos x + 100 \cos (ax) \sin x \right ] \\ &= & \dfrac{100} k (\sin x)^{99} [ \sin(100x) \cos x + \cos (100 x) \sin x ] \\ &=& \dfrac{100} k (\sin x)^{99} [ \sin(100x + x) ] \\ &=& \dfrac{100} k (\sin x)^{99} [ \sin(1001 x) ] \\ \end{aligned}

Comparing it with the expression in question suggests that k = 100 k = 100 as well. Double checking our work indeed shows that a = b = k = 100 a=b=k=100 works. Thus our answer is a + b + k = 300 a+b+k=\boxed{300} .

Very unique !!

Mohammad Hamdar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...