This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
very clear and easy to follow
Since we have x 2 + y 2 = 1 , then we can add 2xy in the both sides: x 2 + 2 x y + y 2 = 1 + 2 x y ; ( x + y ) 2 = 1 + 2 x y ; 2 x y = ( x + y ) 2 − 1 ; x y = ( ( x + y ) 2 − 1 ) / 2 ;
Now since we have x + y = i, then we can do ( x + y ) 2 = i 2 So: x y = ( i 2 − 1 ) / 2 ; We know that i 2 = − 1 . Then: xy = -1
( x + y ) 2 = i 2 We know that i 2 = − 1 .So the above equation becomes: x 2 + 2 x y + y 2 = ( x 2 + y 2 ) + 2 x y = − 1 We know that x 2 + y 2 = 1 .Substituting this into the above equation becomes: 1 + 2 x y = − 1 → 2 x y = − 1 − 1 = − 2 → x y = 2 − 2 = − 1
\left\{ { x }^{ 2 }+{ y }^{ 2 }=1\quad .........(A)\\ x+y=i\quad ............(B) \right \\ From\quad (A)\\ { x }^{ 2 }+{ y }^{ 2 }=1\quad or\\ { x }^{ 2 }+{ y }^{ 2 }+2xy-2xy=1\quad or\\ { (x+y) }^{ 2 }-2xy=1........\quad (C)\quad \quad \quad \quad As\quad (x+y)=i\\ So,\quad (C)\quad Become\\ { i }^{ 2 }-2xy=1\quad or\quad \quad As\quad { i }^{ 2 }=-1\\ -1-2xy=1\quad or\\ -2=2xy\quad or\\ \boxed { xy=-1 } \\
From x + y = i ⟹ ( x + y ) 2 = i 2 ⟹ x 2 + y 2 + 2 x y = − 1 ⟶ (1)
∵ x 2 + y 2 = 1
∴ From (1), 1 + 2 x y = − 1 ⟹ 2 x y = − 2 ⟹ x y = − 1
Answer: x y = − 1
Problem Loading...
Note Loading...
Set Loading...
Given:
x 2 + y 2 = 1 and x + y = i
Start with the expansion for the square of a binomial:
( x + y ) 2 = x 2 + 2 x y + y 2
which can be rewritten as
( x + y ) 2 = ( x 2 + y 2 ) + 2 x y
substitute the given:
i 2 = 1 + 2 x y
Solve:
− 1 = 1 + 2 x y − 2 = 2 x y x y = − 1