Some Equations

Algebra Level 2

{ x 2 + y 2 = 1 x + y = i \begin{cases} { x }^{ 2 }+{ y }^{ 2 }=1 \\ x+y=i \end{cases}

Find x y xy


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Dpk ­
Jul 19, 2014

Given:

x 2 + y 2 = 1 { x }^{ 2 }+{ y }^{ 2 }=1 and x + y = i x+y=i

Start with the expansion for the square of a binomial:

( x + y ) 2 = x 2 + 2 x y + y 2 { (x+y) }^{ 2 }={ x }^{ 2 }+2xy+{ y }^{ 2 }

which can be rewritten as

( x + y ) 2 = ( x 2 + y 2 ) + 2 x y { (x+y) }^{ 2 }={ (x }^{ 2 }+{ y }^{ 2 })+2xy

substitute the given:

i 2 = 1 + 2 x y i^{ 2 }=1+2xy

Solve:

1 = 1 + 2 x y 2 = 2 x y x y = 1 -1=1+2xy\\ -2=2xy\\ xy=-1

very clear and easy to follow

Justin Jian - 6 years, 10 months ago

Since we have x 2 + y 2 = 1 x^{2} + y^{2} = 1 , then we can add 2xy in the both sides: x 2 + 2 x y + y 2 = 1 + 2 x y x^{2} +2xy + y^{2} = 1 +2xy ; ( x + y ) 2 = 1 + 2 x y (x + y)^{2} = 1 + 2xy ; 2 x y = ( x + y ) 2 1 2xy = (x + y)^{2} -1 ; x y = ( ( x + y ) 2 1 ) / 2 xy = ((x + y)^{2} - 1)/2 ;

Now since we have x + y = i, then we can do ( x + y ) 2 = i 2 (x + y)^{2} = i^{2} So: x y = ( i 2 1 ) / 2 xy = (i^{2} - 1)/2 ; We know that i 2 = 1 i^{2} = -1 . Then: xy = -1

Jekin Makwana
Jun 13, 2014
  1. x=i-y
  2. x²+y²=1
  3. Putting value of x
  4. (i-y)²+y²=1
  5. i²-2iy+y²+y²=1
  6. -1-2iy+2y²=1
  7. 2y²-2iy=2
  8. y²-iy=1
  9. y(y-i)=1
  10. y(i-y)=-1
  11. But i-y=x
  12. Therefore xy=-1

( x + y ) 2 = i 2 \color{#20A900}{(x+y)^2=i^2} We know that i 2 = 1 i^2=-1 .So the above equation becomes: x 2 + 2 x y + y 2 = ( x 2 + y 2 ) + 2 x y = 1 \color{#3D99F6}{x^2+2xy+y^2=(x^2+y^2)+2xy=-1} We know that x 2 + y 2 = 1 x^2+y^2=1 .Substituting this into the above equation becomes: 1 + 2 x y = 1 2 x y = 1 1 = 2 x y = 2 2 = 1 \color{#BA33D6}{1+2xy=-1\rightarrow2xy=-1-1=-2\rightarrow xy=\frac{-2}{2}=\boxed{-1}}

Ramiel To-ong
Jun 11, 2015

nice solution:

Hassan Raza
Jul 30, 2014

\left\{ { x }^{ 2 }+{ y }^{ 2 }=1\quad .........(A)\\ x+y=i\quad ............(B) \right \\ From\quad (A)\\ { x }^{ 2 }+{ y }^{ 2 }=1\quad or\\ { x }^{ 2 }+{ y }^{ 2 }+2xy-2xy=1\quad or\\ { (x+y) }^{ 2 }-2xy=1........\quad (C)\quad \quad \quad \quad As\quad (x+y)=i\\ So,\quad (C)\quad Become\\ { i }^{ 2 }-2xy=1\quad or\quad \quad As\quad { i }^{ 2 }=-1\\ -1-2xy=1\quad or\\ -2=2xy\quad or\\ \boxed { xy=-1 } \\

Yang Wei Hao
Jun 15, 2014

From x + y = i x+y=i \Longrightarrow ( x + y ) 2 = i 2 { (x+y) }^{ 2 }={ i }^{ 2 } \Longrightarrow x 2 + y 2 + 2 x y = 1 { x }^{ 2 }{ + }{ y }^{ 2 }+2xy={ -1 } \longrightarrow (1)

\because x 2 + y 2 = 1 { x }^{ 2 }+{ y }^{ 2 }=1

\therefore From (1), 1 + 2 x y = 1 1+2xy=-1 \Longrightarrow 2 x y = 2 2xy=-2 \Longrightarrow x y = 1 xy=-1

Answer: x y xy = 1 \boxed { -1 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...