Some Gud Trigonometry

Calculus Level 5

Let g , h g,h be constants (which may be complex) and G , H G,H be functions defined by

G ( x ) = 2 A r c T a n ( e g x ) π 2 G(x)=2ArcTan(e^{gx})-\dfrac{\pi}{2}

H ( x ) = 2 A r c T a n ( e h x ) π 2 H(x)=2ArcTan(e^{hx})-\dfrac{\pi}{2}

such that one is the inverse of the other, i.e., G ( H ( x ) ) = H ( G ( x ) ) = x G(H(x))=H(G(x))=x .

Find g 2 + h 2 g^2+h^2

There are only two ordered sets of constants g , h g,h possible.

Note: G ( H ( x ) = H ( G ( x ) ) = x G(H(x)=H(G(x))=x \;\; for x = 3 π 2 x=-\dfrac{3\pi}{2} to π 2 \dfrac{\pi}{2} , as both G , H G, H are periodic. Also, to avoid issues of multivalued functions, restrict x x to the range π 2 -\dfrac{\pi}{2} to π 2 \dfrac{\pi}{2} .


The answer is -2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Mendrin
Jul 18, 2018

g , h = i , i g,h=i,-i or g , h = i , i g,h=-i,i , so that i 2 + ( i ) 2 = 2 i^2+(-i)^2=-2

To prove this, H ( G ( x ) ) = H(G(x))=

2 A r c T a n ( e i ( 2 A r c T a n ( e i x ) π 2 ) ) π 2 2ArcTan\left(e^{-i(2ArcTan(e^{ix})-\frac{\pi}{2})}\right)-\dfrac{\pi}{2}

2 A r c T a n ( i e i ( 2 A r c T a n ( e i x ) ) ) π 2 2ArcTan\left(ie^{-i(2ArcTan(e^{ix}))}\right)-\dfrac{\pi}{2}

2 A r c T a n ( i e i ( 2 ( 1 2 i L o g ( 1 i e i x 1 + i e i x ) ) ) ) π 2 2ArcTan\left(ie^{-i\left(2\left(\frac{1}{2}iLog\left(\frac{1-ie^{ix}}{1+ie^{ix}} \right) \right) \right) }\right)-\dfrac{\pi}{2}

2 A r c T a n ( i e L o g ( 1 i e i x 1 + i e i x ) ) π 2 2ArcTan\left(ie^{Log\left(\frac{1-ie^{ix}}{1+ie^{ix}} \right) }\right)-\dfrac{\pi}{2}

2 A r c T a n ( i 1 i e i x 1 + i e i x ) π 2 2ArcTan\left( i \dfrac{1-ie^{ix}}{1+ie^{ix}} \right)-\dfrac{\pi}{2}

2 i A r c T a n h ( 1 i e i x 1 + i e i x ) π 2 2iArcTanh\left(\dfrac{1-ie^{ix}}{1+ie^{ix}} \right)-\dfrac{\pi}{2}

2 i A r c T a n h ( 1 e i ( x + π 2 ) 1 + e i ( x + π 2 ) ) π 2 2iArcTanh\left(\dfrac{1-e^{i(x+\frac{\pi}{2})}}{1+e^{i(x+\frac{\pi}{2})}} \right)-\dfrac{\pi}{2}

2 i A r c T a n h ( T a n h ( 1 2 i ( x + π 2 ) ) ) π 2 2iArcTanh\left(Tanh\left( -\frac{1}{2}i\left(x+\frac{\pi}{2}\right) \right) \right)-\dfrac{\pi}{2}

2 i ( 1 2 i ( x + π 2 ) ) π 2 2i \left( -\frac{1}{2}i\left(x+\frac{\pi}{2} \right) \right)-\dfrac{\pi}{2}

x x

This function (notice, no i i ):

2 A r c T a n ( e x ) π 2 2ArcTan\left(e^x \right)-\dfrac{\pi}{2}

is the Gudermannian Function g d ( x ) gd(x) , with the property that

g d 1 ( i x ) = i g d ( x ) gd^{-1}(ix)=-igd(x)

(negative exponent -1 indicates inverse function) and connects oridinary trigonometric functions with hyperbolic trigonometric functions, as well as their inverses, such as

T a n ( g d ( x ) ) = S i n h ( x ) Tan(gd(x))=Sinh(x)
T a n h ( g d 1 ( x ) ) = S i n ( x ) Tanh(gd^{-1}(x))=Sin(x)
g d ( T a n h 1 ( x ) ) = S i n 1 ( x ) gd(Tanh^{-1}(x))=Sin^{-1}(x)
g d 1 ( T a n 1 ( x ) ) = S i n h 1 ( x ) gd^{-1}(Tan^{-1}(x))=Sinh^{-1}(x)


so that, for example, we can rearrange the second to last one to

g d ( x ) = S i n 1 ( T a n h ( x ) ) = A r c S i n ( T a n h ( x ) ) gd(x)=Sin^{-1}(Tanh(x)) = ArcSin(Tanh(x))

for another definition of the Gudermannian function, one of many more possible. We can even see that

A r c S i n ( T a n h ( x ) ) = A r c T a n ( S i n h ( x ) ) ArcSin(Tanh(x)) = ArcTan(Sinh(x))

and therefore

T a n ( A r c S i n ( T a n h ( x ) ) = S i n h ( x ) Tan(ArcSin(Tanh(x))=Sinh(x)

etc

i did the same thing. but how did you guess.

Srikanth Tupurani - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...