Some guys kept on summing!

Algebra Level 3

Find the sum of all real numbers x x such that 5 x 4 10 x 3 + 10 x 2 5 x 11 = 0. 5x^4 - 10x^3 + 10x^2 - 5x - 11 = 0.

0 1 5 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 12, 2018

5 x 4 10 x 3 + 10 x 2 5 x 11 = 0 Let x 5 12 subtracts both sides. x 5 5 x 4 + 10 x 3 10 x 2 + 5 x 1 = x 5 12 ( x 1 ) 5 = x 5 12 x 5 ( x 1 ) 5 12 = 0 Let u = x 1 2 ( u + 1 2 ) 5 ( u 1 2 ) 5 12 = 0 5 u 4 + 5 2 u 2 + 1 16 12 = 0 80 u 4 + 40 u 2 191 = 0 \begin{aligned} 5x^4-10x^3+10x^2-5x-11 & = 0 & \small \color{#3D99F6} \text{Let }x^5-12 \text{ subtracts both sides.} \\ x^5 - 5x^4+10x^3-10x^2+5x-1 & = x^5-12 \\ (x-1)^5 & = x^5 - 12 \\ \implies x^5 - (x-1)^5 - 12 & = 0 & \small \color{#3D99F6} \text{Let } u = x-\frac 12 \\ \left(u+\frac 12\right)^5 - \left(u-\frac 12\right)^5 - 12 & = 0 \\ 5u^4+\frac 52 u^2 + \frac 1{16} - 12 & = 0 \\ 80u^4 + 40u^2 - 191 & = 0 \end{aligned}

u 2 = 40 + 62720 160 = 7 5 10 1 4 Since u 2 > 0 u = { u 1 = + α x 1 = 1 2 + α u 2 = α x 2 = 1 2 α where α = 7 5 10 1 4 \begin{aligned} \implies u^2 & = \frac {-40+\sqrt{62720}}{160} = \frac {7\sqrt 5}{10} - \frac 14 & \small \color{#3D99F6} \text{Since }u^2 > 0 \\ \implies u & = \begin{cases} u_1= + \color{#3D99F6} \alpha & \implies x_1 = \dfrac 12 + \color{#3D99F6} \alpha \\ u_2 = - \color{#3D99F6} \alpha & \implies x_2 = \dfrac 12 - \color{#3D99F6} \alpha \end{cases} & \small \color{#3D99F6} \text{where }\alpha = \sqrt{\frac {7\sqrt 5}{10} - \frac 14} \end{aligned}

Therefore, the sum of real roots x 1 + x 2 = 1 x_1 + x_2 = \boxed 1 .

Otto Bretscher
Oct 12, 2018

For f ( x ) = x 4 2 x 3 + 2 x 2 x 11 5 f(x)=x^4-2x^3+2x^2-x-\frac{11}{5} we have f ( x ) = 4 x 3 6 x 2 + 4 x 1 , f ( x ) = 12 x 2 12 x + 4 f'(x)=4x^3-6x^2+4x-1,f''(x)=12x^2-12x+4 and f ( x ) = 24 x 12 f'''(x)=24x-12 . Since f ( 1 2 ) = f ( 1 2 ) = 0 f'''(\frac{1}{2})=f'(\frac{1}{2})=0 , the function f ( x ) f(x) is even at 1 2 \frac{1}{2} . Since f ( x ) > 0 f''(x)>0 throughout, the graph of f ( x ) f(x) is convex, and f ( x ) f(x) has exactly two real roots 1 2 ± a \frac{1}{2}\pm a . Thus the answer is 1 \boxed{1} .

Very good sir.

EKENE FRANKLIN - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...