Some Integrals, A Sum

Calculus Level pending

Assuming x x and y y are both in ( 1 , 1 ) (-1,1) ,

0 1 2 ( 0 y ( k = 0 x k 0 1 cos k ( π x ) d x ) d x ) d y = π a b \int_0^{\frac{1}{2}} \left(\int_0^y \left(\sum _{k=0}^{\infty } \frac{x^k}{\int_0^1 \cos ^k(\pi x) \, dx}\right) \, dx\right) \, dy = \frac{{\pi}^a}{b}

where a , b a,b are positive integers. Submit a + b a+b .


The answer is 74.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hints:

0 1 cos k ( π x ) d x = ( ( 1 ) k + 1 ) Γ ( k + 1 2 ) π k Γ ( k 2 ) \int_0^1 \cos ^k(\pi x) \, dx=\frac{\left((-1)^k+1\right) \Gamma \left(\frac{k+1}{2}\right)}{\sqrt{\pi } k \Gamma \left(\frac{k}{2}\right)}

k = 0 x k 0 1 cos k ( π x ) d x = 1 x 2 x sin 1 ( x ) 1 x 2 ( x 2 1 ) \sum _{k=0}^{\infty } \frac{x^k}{\int_0^1 \cos ^k(\pi x) \, dx}=\frac{-\sqrt{1-x^2}-x \sin ^{-1}(x)}{\sqrt{1-x^2} \left(x^2-1\right)}

0 y 1 x 2 x sin 1 ( x ) 1 x 2 ( x 2 1 ) d x = 1 y 2 sin 1 ( y ) y 2 1 \int_0^y \frac{-\sqrt{1-x^2}-x \sin ^{-1}(x)}{\sqrt{1-x^2} \left(x^2-1\right)} \, dx=-\frac{\sqrt{1-y^2} \sin ^{-1}(y)}{y^2-1}

0 z 1 y 2 sin 1 ( y ) y 2 1 d y = 1 2 sin 1 ( z ) 2 \int_0^z -\frac{\sqrt{1-y^2} \sin ^{-1}(y)}{y^2-1} \, dy=\frac{1}{2} \sin ^{-1}(z)^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...