Some "Log"ic required

Algebra Level 3

log 4 ( x + 2 y ) + log 4 ( x 2 y ) = 1 \large \log_4(x+2y) + \log_4(x-2y)=1

Find the minimum value of x y |x|-|y| .


The answer is 1.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 30, 2018

log 4 ( x + 2 y ) + log 4 ( x 2 y ) = 1 Note that log A B = log A + log B log 4 ( x + 2 y ) ( x 2 y ) = 1 log 4 ( x 2 4 y 2 ) = 1 and log b a = c a = c b x 2 4 y 2 = 4 x = ± 2 y 2 + 1 \begin{aligned} \log_4 (x+2y) + \log_4(x-2y) & = 1 & \small \color{#3D99F6} \text{Note that }\log AB = \log A + \log B \\ \log_4 (x+2y)(x-2y) & = 1 \\ \log_4 (x^2-4y^2) & = 1 & \small \color{#3D99F6} \text{and }\log_b a = c \implies a = c^b \\ x^2-4y^2 & = 4 \\ \implies x & = \pm 2 \sqrt{y^2 + 1} \end{aligned}

Therefore, we have:

z = x y = 2 y 2 + 1 y For y > 0 d z d y = 2 y y 2 + 1 1 = 2 y y 2 + 1 y 2 + 1 \begin{aligned} z & = |x| - |y| = 2\sqrt{y^2+1} - y & \small \color{#3D99F6} \text{For }y > 0 \\ \frac {dz}{dy} & = \frac {2y}{\sqrt{y^2+1}} - 1 = \frac {2y-\sqrt{y^2+1}}{\sqrt{y^2+1}} \end{aligned}

Putting d z d y = 0 \dfrac {dz}{dy} = 0 2 y = y 2 + 1 \implies 2y = \sqrt{y^2+1} 4 y 2 = y 2 + 1 \implies 4y^2 = y^2 + 1 y = ± 1 3 \implies y = \pm \dfrac 1{\sqrt 3} . Note that d 2 z d y 2 = 2 2 y 2 ( y 2 + 1 ) 3 2 \dfrac {d^2z}{dy^2} = \dfrac {2-2y^2} {(y^2+1)^\frac 32} and d 2 z d y 2 > 0 \dfrac {d^2z}{dy^2} > 0 when y = ± 1 3 y = \pm \dfrac 1{\sqrt 3} . This implies that min ( z ) = 2 1 3 + 1 1 3 = 3 1.732 \min (z) = 2\sqrt{\frac 13+1} - \frac 1{\sqrt 3} = \sqrt 3 \approx \boxed{1.732} .

Aaghaz Mahajan
Oct 28, 2018

Hint :- Parameterise the hyperbola..........!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...