Some secondary parts of a triangle II

Geometry Level 4

About triangle A B C ABC we know that:

  • h a = 48 {{h}_{a}}=48
  • h b = 75 {{h}_{b}}=75
  • I A I B I C = 900 R IA\cdot IB\cdot IC=900R

Where h a {{h}_{a}} , h b {{h}_{b}} are the altitudes to sides a = B C a=BC and b = C A b=CA respectively, I I is the incenter and R R is the circumradius of the triangle.

Find its perimeter.


The answer is 400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 16, 2020

We can solve this without using Heron's formula .

We have I A I B I C = 4 R r 2 IA \cdot IB \cdot IC = 4Rr^2 ( see [9] ), where R R and r r are the circumradius and inradius of A B C \triangle ABC respectively. Then we have 4 R r 2 = 900 R 4Rr^2 = 900R , r = 15 \implies r = 15 .

We also have 1 r = 1 h a + 1 h b + 1 h c \dfrac 1r = \dfrac 1{h_a} + \dfrac 1{h_b} + \dfrac 1{h_c} ( see [12] ) 1 15 = 1 48 + 1 75 + 1 h c \implies \dfrac 1{15} = \dfrac 1{48} + \dfrac 1{75} + \dfrac 1{h_c} h c = 400 13 \implies h_c = \dfrac {400}{13} .

Since the area of A B C \triangle ABC , [ A B C ] = a h a 2 = b h b 2 = c h c 2 [ABC] = \dfrac {ah_a}2 = \dfrac {bh_b}2 = \dfrac {ch_c}2 a : b : c = 1 48 : 1 75 : 13 400 = 25 : 16 : 39 \implies a:b:c = \dfrac 1{48} : \dfrac 1{75} : \dfrac {13}{400} = 25:16:39 . Then by cosine rule we have 3 9 2 = 2 5 2 + 1 6 2 2 ( 25 ) ( 16 ) cos C 39^2 = 25^2 + 16^2 - 2(25)(16) \cos C , cos C = 0.8 sin C = 0.6 \implies \cos C = -0.8 \implies \sin C = 0.6 .

The area of A B C \triangle ABC is also given by [ A B C ] = a b sin C 2 = a h a 2 [ABC] = \dfrac {ab\sin C}2 = \dfrac {ah_a}2 , 0.6 b = 48 b = 80 \implies 0.6 b = 48 \implies b = 80 a = 125 \implies a = 125 and c = 195 c=195 and the perimeter a + b + c = 125 + 80 + 195 = 400 a+b+c = 125+80+195 = \boxed{400} .

Nice alternative!

Thanos Petropoulos - 10 months ago

But Heron's Rule is a consequence of the Cosine Rule, since cos C = a 2 + b 2 c 2 2 a b \cos C = \tfrac{a^2 + b^2 - c^2}{2ab} gives sin C = 2 a b s ( s a ) ( s b ) ( s c ) \sin C = \tfrac{2}{ab}\sqrt{s(s-a)(s-b)(s-c)} by simple algebra, and hence Δ = 1 2 a b sin C = s ( s a ) ( s b ) ( s c ) \Delta = \tfrac12ab\sin C = \sqrt{s(s-a)(s-b)(s-c)} . Thus you are simply following through the details of the proof of Heron's Formula.

Mark Hennings - 10 months ago

Let r r be the inradius and s s the semiperimeter of the triangle. Denote A B AB by c c .

For this solution, we use some properties of the incenter one can find here and the result Mark Hennings proved in his solution to this problem.

Precisely, we need the formulae I A I B I C = 4 R r 2 ( 1 ) 1 h a + 1 h b + 1 h c = 1 r ( 2 ) Heron’s formula: [ A B C ] = s ( s a ) ( s b ) ( s c ) ( 3 ) \begin{aligned} IA\cdot IB\cdot IC=4R{{r}^{2}} \ \ \ \ \ & (1) \\ \dfrac{1}{{{h}_{a}}}+\dfrac{1}{{{h}_{b}}}+\dfrac{1}{{{h}_{c}}}=\dfrac{1}{r} \ \ \ \ \ & (2) \\ \text{Heron’s formula: } \ \ \left[ ABC \right]=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} \ \ \ \ \ & (3) \\ \end{aligned} Step 1 : the inradius ( 1 ) 900 R = 4 R r 2 r 2 = 225 r = 15 \left( 1 \right)\Rightarrow 900R=4R{{r}^{2}}\Rightarrow {{r}^{2}}=225\Rightarrow r=15 Step 2 : the third altitude: ( 2 ) 1 48 + 1 75 + 1 h c = 1 15 h c = 400 13 \left( 2 \right)\Rightarrow \frac{1}{48}+\frac{1}{75}+\frac{1}{{{h}_{c}}}=\frac{1}{15}\Rightarrow {{h}_{c}}=\frac{400}{13} Step 3 : the triangle’s sides [ A B C ] = 1 2 h a a = 1 2 h b b = 1 2 h c c 48 a = 75 b = 400 13 c { b = 16 25 a c = 39 25 a \begin{aligned} \left[ ABC \right]=\frac{1}{2}{{h}_{a}}\cdot a=\frac{1}{2}{{h}_{b}}\cdot b=\frac{1}{2}{{h}_{c}}\cdot c& \Rightarrow 48a=75b=\frac{400}{13}c \Rightarrow \left\{ \begin{matrix} b=\frac{16}{25}a \\ \ \ \\ c=\frac{39}{25}a \\ \end{matrix} \right. \\ \end{aligned}

s = a + b + c 2 = ( 1 + 16 25 + 39 25 ) a 2 s = 40 25 a s=\dfrac{a+b+c}{2}=\left( 1+\frac{16}{25}+\frac{39}{25} \right)\dfrac{a}{2} \Rightarrow s=\frac{40}{25}a

s a = 40 25 a a = 15 25 a s b = 40 25 a 16 25 a = 24 25 a s c = 40 25 a 39 25 a = 1 25 a s-a=\frac{40}{25}a-a=\frac{15}{25}a \ \ \ \ \ \ \ \ \ \ s-b=\frac{40}{25}a-\frac{16}{25}a=\frac{24}{25}a \ \ \ \ \ \ \ \ \ \ s-c=\frac{40}{25}a-\frac{39}{25}a=\frac{1}{25}a

Now, Heron’s formula ( 3 ) ( 1 2 h a a ) 2 = 40 25 15 25 24 25 1 25 a 4 24 2 a 2 = 14400 25 4 a 4 a 2 = 24 2 25 4 120 2 a = 125 \begin{aligned} \left( 3 \right) & \Rightarrow {{\left( \frac{1}{2}{{h}_{a}}a \right)}^{2}}=\frac{40}{25}\cdot \frac{15}{25}\cdot \frac{24}{25}\cdot \frac{1}{25}\cdot {{a}^{4}} \\ & \Rightarrow {{24}^{2}}{{a}^{2}}=\frac{14400}{{{25}^{4}}}{{a}^{4}} \\ & \Rightarrow {{a}^{2}}=\frac{{{24}^{2}}\cdot {{25}^{4}}}{{{120}^{2}}} \\ & \Rightarrow a=125 \\ \end{aligned} Consequently,
b = 16 25 125 b = 80 b=\frac{16}{25}\cdot 125\Rightarrow b=80 c = 39 25 125 c = 195 c=\frac{39}{25}\cdot 125\Rightarrow c=195 For the answer, the perimeter is a + b + c = 125 + 80 + 195 = 400 a+b+c=125+80+195=\boxed{400}

The proof of (1) is easy.We note that s a = I A cos 1 2 A = I A s ( s a ) b c s-a \; = \; IA \cos\tfrac12A \; = \; IA \sqrt{\frac{s(s-a)}{bc}} so that I A = ( s a ) b c s IA \; = \; \sqrt{\frac{(s-a)bc}{s}} and similarly for I B , I C IB,IC , so that I A I B I C = ( s a ) ( s b ) ( s c ) s 3 a b c = Δ a b c s 2 = 4 R Δ 2 s 2 = 4 R r 2 IA\,\cdot\,IB\,\cdot\,IC \; = \; \sqrt{\frac{(s-a)(s-b)(s-c)}{s^3}}abc \; = \; \frac{\Delta abc}{s^2} \; = \; \frac{4R\Delta^2}{s^2} \; = \; 4Rr^2

Mark Hennings - 10 months ago

Log in to reply

Nice addition!

Thanos Petropoulos - 10 months ago
David Vreken
Aug 16, 2020

By the properties of an incenter , I A I B I C = 4 R r 2 = 900 R IA\cdot IB \cdot IC = 4Rr^2 = 900R , which solves to r = 15 r = 15 .

The area of a triangle is T = r s T = rs , so T = 15 s T = 15s .

The area of a triangle is also T = 1 2 b h T = \frac{1}{2}bh , so 2 T = 48 a 2T = 48a and 2 T = 75 b 2T = 75b .

By Heron's formula the area of a triangle is also T 2 = s ( s a ) ( s b ) ( s c ) T^2 = s(s - a)(s - b)(s - c) , where 2 s = a + b + c 2s = a + b + c .

These five equations solve to positive solutions of a = 125 a = 125 , b = 80 b = 80 , c = 195 c = 195 , s = 200 s = 200 , and T = 3000 T = 3000 .

Therefore, the perimeter is 2 s = 2 200 = 400 2s = 2 \cdot 200 = \boxed{400} .

Great! Thanks for contributing!

Thanos Petropoulos - 9 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...