Some sequence of natural numbers

Calculus Level 1

Evaluate the following expression:

lim n ( 1 n 2 + 2 n 2 + . . . + n 1 n 2 ) = ? \lim_{n \to \infty} \left(\dfrac{1}{n^{2}} + \dfrac{2}{n^{2}} + ... + \dfrac{n - 1}{n^{2}} \right) = \space ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jul 14, 2019

L = lim n ( 1 n 2 + 2 n 2 + 3 n 2 + + n 1 n 2 ) = lim n 1 n 2 k = 1 n 1 k = lim n 1 n 2 × ( n 1 ) n 2 = lim n n 2 n 2 n 2 Divide up and down by n 2 = lim n 1 1 n 2 = 1 2 = 0.5 \begin{aligned} L & = \lim_{n \to \infty} \left(\frac 1{n^2} + \frac 2{n^2} + \frac 3{n^2} + \cdots + \frac {n-1}{n^2} \right) \\ & = \lim_{n \to \infty} \frac 1{n^2} \sum_{k=1}^{n-1} k \\ & = \lim_{n \to \infty} \frac 1{n^2} \times \frac {(n-1)n}2 \\ & = \lim_{n \to \infty} \frac {n^2-n}{2n^2} & \small \color{#3D99F6} \text{Divide up and down by }n^2 \\ & = \lim_{n \to \infty} \frac {1-\frac 1n}2 \\ & = \frac 12 = \boxed{0.5} \end{aligned}

The sum of the numerators should be n^2/2

Travor Liu - 1 year, 10 months ago

Log in to reply

I agree, it should be n 2 2 \dfrac{n^{2}}{2} .

Ved Pradhan - 12 months ago

I submitted my ans 2 in place of 1/2 in a hurry, oopppssss!!!

Arpit Bajpai - 1 year, 9 months ago
Aareyan Manzoor
Jul 15, 2019

an alternate method is to recognize this is a Riemann sum, i.e lim n 1 n k = 1 n 1 k n = 0 1 x dx = 1 2 \lim_{n\to \infty} \dfrac{1}{n} \sum_{k=1}^{n-1} \dfrac{k}{n} = \int_0^1 x \text{dx} = \dfrac{1}{2}

That is the easiest one

Pablo Sanchez - 1 year, 11 months ago
Maksym Karunos
Jul 24, 2019

As the common denominator n 2 n^2 , We can add all the numbers from 1 to n 1 n-1 in the numerator simply arithmetic sum formula : S = ( 1 + ( n 1 ) ) n 2 ) S = \frac{(1 + (n - 1))\cdot n }{2} )

S = n 2 2 S = \frac{n^2}{2}

l i m x S n 2 lim_{x\to\infty} \frac{S}{n^2} = l i m x n 2 2 n 2 lim_{x\to\infty} \frac{\frac{n^2}{2}}{n^2}

Cancel out n 2 n^2

l i m x 1 2 = 1 2 lim_{x\to\infty} \frac{1}{2} = \boxed{\frac{1}{2}}

Oleg Yovanovich
Jul 14, 2019

Simply, the sum above the line of the fraction is the sum of the first n-1 natural numbers. After the reduction, dividing by n, both parts of the ratio, we come to the result of 1/2.

Can we use the Stolz -Cesaro theorem?

Shourya De - 10 months, 3 weeks ago
Gandoff Tan
Dec 1, 2019

= lim n ( 1 n 2 + 2 n 2 + + n 1 n 2 ) = lim n 1 + 2 + + n 1 n 2 = lim n 1 n 2 ( n 1 ) ( n 2 ) 2 = lim n n 2 3 n + 2 2 n 2 = lim n 1 3 n + 2 n 2 2 = 1 0 + 0 2 = 1 2 \begin{aligned} &\textcolor{#FFFFFF}{=}\lim\limits_{n\rightarrow\infin}\left(\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n-1}{n^2}\right)\\ &=\lim\limits_{n\rightarrow\infin}\frac{1+2+\cdots+n-1}{n^2}\\ &=\lim\limits_{n\rightarrow\infin}\frac{1}{n^2}\frac{(n-1)(n-2)}{2}\\ &=\lim\limits_{n\rightarrow\infin}\frac{n^2-3n+2}{2n^2}\\ &=\lim\limits_{n\rightarrow\infin}\frac{1-\frac3n+\frac{2}{n^2}}{2}\\ &=\frac{1-0+0}{2}\\ &=\boxed{\frac12} \end{aligned}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...