Some simple sequences

Calculus Level 5

The three sequences, { a n } n = 1 , { b n } n = 1 \{ a_n \}_{n=1}^{\infty } , \{ b_n \}_{n=1}^{\infty } and { c n } n = 1 \{ c_n \}_{n=1}^{\infty } , satisfy the following:

  1. a n b n c n n N \displaystyle a_n \leq b_n \leq c_n \quad \forall n \in \mathbb{ N}

  2. a n + b n + c n = p ( n ) \displaystyle a_n + b_n + c_n = p(n) ; which is a polynomial.

  3. a n b n c n \displaystyle a_n b_n c_n is a non zero constant n N \forall n \in \mathbb{ N} .

  4. a n + 1 a n + 1 + b n + 1 b n + 1 + c n + 1 c n + 1 = 0 n N \displaystyle a_n + \frac{1}{a_{n+1}} + b_n + \frac{1}{b_{n+1}} + c_n + \frac{1}{c_{n+1}} = 0 \quad \forall n \in \mathbb{ N} .

  5. a n 3 + b n 3 + c n 3 = 8 n 3 + 6 n + 1 \displaystyle {a_n}^3 + {b_n}^3 + {c_n}^3 = 8n^3 + 6n +1 .

Evaluate: lim n ( 38 n a n ) \displaystyle \lim_{n \to \infty } ( 38n a_n )


The answer is -19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...