f 0 ( x ) = x 2
The N th derivative of parabola f n ( x ) at x = 0 equals f n + 1 ( N ) , 0 ≤ N ≤ 2
The axis of symmetry of f ∞ ( x ) can be expressed as x = d a b 1 + c for positive integers a , b , c , d
Find the minimum value of a + b + c + d
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f n ( x ) = a n x 2 + b n x , a 0 = 1 , b 0 = 0
a n + 1 = a n − b n
b n + 1 = 2 b n − a n
Solve the recurrence relations
a n = 1 0 5 + 5 ( 2 3 − 5 ) n + 1 0 5 − 5 ( 2 3 + 5 ) n
b n = 2 n 5 ( 3 − 5 ) n − ( 3 + 5 ) n
n → ∞ lim a n = 1 0 5 − 5 ( 2 3 + 5 ) n
n → ∞ lim b n = − 2 n 5 ( 3 + 5 ) n
Thus the axis of symmetry approaches
x = 4 5 + 1
Problem Loading...
Note Loading...
Set Loading...
Let f n ( x ) = a n x 2 + b n x + c n for n ∈ W (Set of whole numbers) with a 0 = 1 , b 0 = 0 , c 0 = 0
Then according to question, f n + 1 ( 0 ) = c n f n + 1 ( 1 ) = b n f n + 1 ( 2 ) = 2 a n
But according to sequence f n ( x ) , f n + 1 ( x ) = a n + 1 x 2 + b n + 1 x + c n + 1 ⇒ f n + 1 ( 0 ) = c n + 1 f n + 1 ( 1 ) = a n + 1 + b n + 1 + c n + 1 and f n + 1 ( 2 ) = 4 a n + 1 + 2 b n + 1 + c n + 1
Comparing both sets of equations we get c n + 1 = c n … E q . 1 a n + 1 + b n + 1 + c n + 1 = b n … E q . 2 4 a n + 1 + 2 b n + 1 + c n + 1 = 2 a n … E q . 3
Since c 0 = 0 , E q . 1 implies that c n = 0 ∀ n ∈ W . Rewriting E q . 2 and E q . 3 we get a n + 1 + b n + 1 = b n … E q . 4 4 a n + 1 + 2 b n + 1 = 2 a n … E q . 5
Solving E q . 4 and E q . 5 for a n + 1 and b n + 1 we get a n + 1 = a n − b n … E q . 6 b n + 1 = 2 b n − a n … E q . 7 Applying recurrence relation E q . 6 and E q . 7 on E q . 6 we get a n + 1 = a n − b n = ( a n − 1 − b n − 1 ) − ( 2 b n − 1 − a n − 1 ) = 2 a n − 1 − 3 b n − 1 Applying reccurence relation for two more times we get a n + 1 = 5 a n − 2 − 8 b n − 2 = 1 3 a n − 3 − 2 1 b n − 3 We see the Fibonacci sequence in the coefficient of a and b in the expression of a n + 1 with initial terms F 0 = 1 , F 1 = 1 . That is a n + 1 = F 0 a n − F 1 b n = F 2 a n − 1 − F 3 a n − 1 and in general a n + 1 = F 2 k a n − k − F 2 k + 1 b n − k for 0 ≤ k ≤ n … E q . 8
E q . 8 can be proved as follows:
a n + 1 = a n − b n = F 0 a n − F 1 b n (Base case k = 0 is true) Let E q . 8 be true for k = l , then a n + 1 = F 2 l a n − l − F 2 l + 1 b n − l = F 2 l ( a n − l − 1 − b n − l − 1 ) − F 2 l + 1 ( 2 b n − l − 1 − a n − l − 1 ) = ( F 2 l + F 2 l + 1 ) a n − l − 1 − ( F 2 l + 2 F 2 l + 1 ) b n − l − 1 = F 2 l + 2 a n − l − 1 − F 2 l + 3 b n − l − 1 = F 2 ( l + 1 ) a n − ( l + 1 ) − F 2 ( l + 1 ) + 1 b n − ( l + 1 ) (true for k = l + 1 )
Thus from mathematical induction E q . 8 is true.
Putting k = n in E q . 8 we get a n + 1 = F 2 n a 0 − F 2 n + 1 b 0 = F 2 n ∀ n ∈ W
⇒ a n = F 2 n − 2 ∀ n ∈ N and b n = a n − a n + 1 = F 2 n − 2 − F 2 n = − F 2 n − 1 ∀ n ∈ N
Roots of f n ( x ) = 0 are x = 0 and x = − a n b n . Hence the equation of axis of symmetry is x = − 2 a n b n
lim n → ∞ ( − 2 a n b n ) = 2 1 ⋅ lim n → ∞ F 2 n − 2 F 2 n − 1 = 2 φ = 4 5 + 1 (where φ is the golden ratio.)