Some sort of iteration involving derivatives

Algebra Level pending

f 0 ( x ) = x 2 f_0(x)=x^2

The N N th derivative of parabola f n ( x ) f_n(x) at x = 0 x=0 equals f n + 1 ( N ) , 0 N 2 f_{n+1}(N),0\leq N\leq2

The axis of symmetry of f ( x ) f_\infty(x) can be expressed as x = a 1 b + c d x=\dfrac{a^\frac{1}{b}+c}{d} for positive integers a , b , c , d a,b,c,d

Find the minimum value of a + b + c + d a+b+c+d


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f n ( x ) = a n x 2 + b n x + c n \text{ Let }f_{n}(x) = a_{n}x^2 + b_{n}x + c_{n} for n W (Set of whole numbers) with a 0 = 1 , b 0 = 0 , c 0 = 0 \text{ for }n\in \mathbb{W}\text{(Set of whole numbers)}\text{ with }a_{0} = 1\;,\;b_{0} = 0\;,\;c_{0} = 0

Then according to question, f n + 1 ( 0 ) = c n f n + 1 ( 1 ) = b n f n + 1 ( 2 ) = 2 a n \text{ Then according to question, }\newline f_{n+1}(0) = c_{n}\newline f_{n+1}(1) = b_{n}\newline f_{n+1}(2) = 2a_{n}

But according to sequence f n ( x ) , f n + 1 ( x ) = a n + 1 x 2 + b n + 1 x + c n + 1 f n + 1 ( 0 ) = c n + 1 f n + 1 ( 1 ) = a n + 1 + b n + 1 + c n + 1 and f n + 1 ( 2 ) = 4 a n + 1 + 2 b n + 1 + c n + 1 \text{But according to sequence }f_{n}(x)\;,\quad f_{n+1}(x) = a_{n+1}x^2 + b_{n+1}x + c_{n+1}\newline\Rightarrow\hspace{6pt} f_{n+1}(0) = c_{n+1}\newline\hspace{19pt} f_{n+1}(1) = a_{n+1}+b_{n+1}+c_{n+1}\newline\text{and } f_{n+1}(2) = 4a_{n+1}+2b_{n+1} + c_{n+1}

Comparing both sets of equations we get c n + 1 = c n E q . 1 a n + 1 + b n + 1 + c n + 1 = b n E q . 2 4 a n + 1 + 2 b n + 1 + c n + 1 = 2 a n E q . 3 \text{Comparing both sets of equations we get}\newline c_{n+1} = c_{n}\hspace{118pt}\dots\;Eq. 1\newline a_{n+1} + b_{n+1} + c_{n+1} = b_{n}\hspace{56pt}\dots\;Eq. 2\newline 4a_{n+1} + 2b_{n+1} + c_{n+1} = 2a_{n}\hspace{40pt}\dots\;Eq. 3

Since c 0 = 0 , E q . 1 implies that c n = 0 n W . Rewriting E q . 2 and E q . 3 we get a n + 1 + b n + 1 = b n E q . 4 4 a n + 1 + 2 b n + 1 = 2 a n E q . 5 \text{Since }c_{0} = 0\;,\;Eq. 1 \text{ implies that }c_{n} = 0 \hspace{15pt}\forall \;n\in \mathbb{W}.\text{ Rewriting }Eq. 2\text{ and }Eq. 3\text{ we get }\newline a_{n+1} + b_{n+1} = b_{n}\hspace{43pt}\dots\;Eq. 4\newline 4a_{n+1} + 2b_{n+1} = 2a_{n}\hspace{27pt}\dots\;Eq. 5

Solving E q . 4 \text{Solving }Eq. 4 and E q . 5 \text{ and }Eq. 5 for a n + 1 \text{ for }a_{n+1} and b n + 1 \text{ and }b_{n+1} we get a n + 1 = a n b n E q . 6 b n + 1 = 2 b n a n E q . 7 Applying recurrence relation E q . 6 and E q . 7 on E q . 6 we get a n + 1 = a n b n = ( a n 1 b n 1 ) ( 2 b n 1 a n 1 ) = 2 a n 1 3 b n 1 Applying reccurence relation for two more times we get a n + 1 = 5 a n 2 8 b n 2 = 13 a n 3 21 b n 3 We see the Fibonacci sequence in the coefficient of a and b in the expression of a n + 1 \text{ we get}\newline a_{n+1} = a_n - b_n\hspace{25pt}\dots\;Eq. 6\newline b_{n+1} = 2b_n - a_n\hspace{21pt}\dots\;Eq. 7\newline\text{Applying recurrence relation }Eq. 6\text{ and }Eq. 7 \text{ on }Eq.6\text{ we get }\newline a_{n+1} = a_n - b_n\newline \hspace{22pt} = (a_{n-1} - b_{n-1}) - (2b_{n-1} - a_{n-1}) \newline\hspace{22pt} = 2a_{n-1} - 3b_{n-1}\newline\text{Applying reccurence relation for two more times we get}\newline a_{n+1} = 5a_{n-2} - 8b_{n-2}\newline\hspace{22pt} = 13a_{n-3} - 21b_{n-3}\newline\text{We see the Fibonacci sequence in the coefficient of }a \text{ and }b\text{ in the expression of }a_{n+1} with initial terms F 0 = 1 , F 1 = 1 . That is a n + 1 = F 0 a n F 1 b n = F 2 a n 1 F 3 a n 1 and in general a n + 1 = F 2 k a n k F 2 k + 1 b n k \text{ with initial terms }F_0 = 1\;,\;F_1 = 1\text{. That is }\newline a_{n+1} = F_{0}a_n - F_{1}b_n\newline\hspace{22pt}=F_{2}a_{n-1} - F_{3}a_{n-1}\newline\text{and in general }\newline a_{n+1} = F_{2k}a_{n-k} - F_{2k+1}b_{n-k} for 0 k n E q . 8 \text{ for }0\leq k\leq n \hspace{20pt} \dots\;Eq. 8

E q . 8 can be proved as follows: \newline Eq. 8\text{ can be proved as follows: }

a n + 1 = a n b n = F 0 a n F 1 b n (Base case k = 0 is true) Let E q . 8 be true for k = l , then a n + 1 = F 2 l a n l F 2 l + 1 b n l = F 2 l ( a n l 1 b n l 1 ) F 2 l + 1 ( 2 b n l 1 a n l 1 ) = ( F 2 l + F 2 l + 1 ) a n l 1 ( F 2 l + 2 F 2 l + 1 ) b n l 1 = F 2 l + 2 a n l 1 F 2 l + 3 b n l 1 = F 2 ( l + 1 ) a n ( l + 1 ) F 2 ( l + 1 ) + 1 b n ( l + 1 ) (true for k = l + 1 ) a_{n+1} = a_n - b_n = F_{0}a_n - F_{1}b_n\;\;\text{(Base case }k = 0\text{ is true)}\newline \text{Let }Eq. 8\text{ be true for }k = l\text{, then }\newline a_{n+1} = F_{2l}a_{n-l} - F_{2l+1}b_{n-l}\newline\hspace{22pt} = F_{2l}(a_{n-l-1} - b_{n-l-1}) - F_{2l+1}(2b_{n-l-1} - a_{n-l-1})\newline\hspace{22pt} = (F_{2l} + F_{2l+1})a_{n-l-1} - (F_{2l} + 2F_{2l+1})b_{n-l-1}\newline\hspace{22pt} = F_{2l+2}a_{n-l-1} - F_{2l+3}b_{n-l-1}\newline\hspace{22pt} = F_{2(l+1)}a_{n-(l+1)} - F_{2(l+1)+1}b_{n-(l+1)}\quad \text{(true for }k=l+1)

Thus from mathematical induction E q . 8 is true. \newline \text{Thus from mathematical induction }Eq. 8\text{ is true.}

Putting k = n in E q . 8 we get a n + 1 = F 2 n a 0 F 2 n + 1 b 0 = F 2 n n W \text{Putting }k=n\text{ in }Eq. 8\text{ we get }\newline a_{n+1} = F_{2n}a_{0} - F_{2n+1}b_{0} = F_{2n}\;\forall \;n\in \mathbb{W}

a n = F 2 n 2 n N and b n = a n a n + 1 = F 2 n 2 F 2 n = F 2 n 1 n N \newline \Rightarrow a_n = F_{2n-2} \;\forall\;n\in \mathbb{N}\newline\text{and } b_n = a_n - a_{n+1} = F_{2n-2} - F_{2n} = -F_{2n-1}\;\forall\;n\in \mathbb{N}

Roots of f n ( x ) = 0 are x = 0 and x = b n a n . \text{Roots of }f_{n}(x) = 0 \text{ are }x = 0 \text{ and }x = \large-\frac{b_n}{a_n}. Hence the equation of axis of symmetry is x = b n 2 a n \text{ Hence the equation of axis of symmetry is }x = \large-\frac{b_n}{2a_n}

lim n ( b n 2 a n ) = 1 2 lim n F 2 n 1 F 2 n 2 = φ 2 = 5 + 1 4 (where φ is the golden ratio.) \large\lim_{n\to\infty}(-\frac{b_n}{2a_n}) = \frac{1}{2}\cdot\lim_{n\to\infty}\frac{F_{2n-1}}{F_{2n-2}}=\frac{\varphi}{2} =\frac{\sqrt{5}+1}{4}\;\text{(where }\varphi\text{ is the golden ratio.)}

Ryan S
Nov 1, 2019

f n ( x ) = a n x 2 + b n x f_n(x)=a_nx^2+b_nx , a 0 = 1 a_0=1 , b 0 = 0 b_0=0

a n + 1 = a n b n a_{n+1}=a_n-b_n

b n + 1 = 2 b n a n b_{n+1}=2b_n-a_n

Solve the recurrence relations

a n = 5 + 5 10 ( 3 5 2 ) n + 5 5 10 ( 3 + 5 2 ) n a_n=\frac{\sqrt{5}+5}{10}\left(\frac{3-\sqrt{5}}{2}\right)^n+\frac{5-\sqrt{5}}{10}\left(\frac{3+\sqrt{5}}{2}\right)^n

b n = ( 3 5 ) n ( 3 + 5 ) n 2 n 5 b_n=\frac{\left(3-\sqrt{5}\right)^n-\left(3+\sqrt{5}\right)^n}{2^n\sqrt{5}}

lim n a n = 5 5 10 ( 3 + 5 2 ) n \lim\limits_{n\to\infty}a_n=\frac{5-\sqrt{5}}{10}\left(\frac{3+\sqrt{5}}{2}\right)^n

lim n b n = ( 3 + 5 ) n 2 n 5 \lim\limits_{n\to\infty}b_n=-\frac{\left(3+\sqrt{5}\right)^n}{2^n\sqrt{5}}

Thus the axis of symmetry approaches

x = 5 + 1 4 x=\frac{\sqrt{5}+1}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...