Some (sum) cosines find tangent!!!

Algebra Level 4

i = 0 88 1 cos ( r ) cos ( r + 1 ) = tan ( θ ) sin ( 1 ) \sum_{i=0}^{88}\frac{1}{\cos(r^\circ)\cos(r^\circ+1^\circ)}=\frac{\tan(\theta^\circ)}{\sin(1^\circ)}

Find the smallest positive value of θ \theta (in degrees).


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shikhar Jaiswal
Mar 20, 2014

There's a typo in the first line. It should be r r instead of i i

r = 0 88 1 ( cos ( r ) ) ( cos ( r + 1 ) ) \displaystyle \sum_{r=0}^{88}\frac {1}{(\cos(r))(\cos(r+1))}

= r = 0 88 sin ( 1 ) ( cos ( r ) ) ( cos ( r + 1 ) ) sin ( 1 ) \displaystyle \sum_{r=0}^{88}\frac {\sin(1)}{(\cos(r))(\cos (r+1))\sin(1)}

= r = 0 88 sin ( ( r + 1 ) ( r ) ) ( cos ( r ) ) ( cos ( r + 1 ) ) sin ( 1 ) \displaystyle \sum_{r=0}^{88}\frac {\sin((r+1)-(r))}{(\cos(r))(\cos (r+1))\sin(1)}

= r = 0 88 sin ( r + 1 ) cos ( r ) cos ( r + 1 ) sin ( r ) ) ( cos ( r ) ) ( cos ( r + 1 ) ) sin ( 1 ) \displaystyle \sum_{r=0}^{88}\frac {\sin(r+1)\cos(r)-\cos(r+1)\sin(r))}{(\cos(r))(\cos (r+1))\sin(1)}

= 1 sin ( 1 ) r = 0 88 tan ( r + 1 ) tan ( r ) \frac {1}{\sin (1)} \displaystyle \sum_{r=0}^{88}\tan(r+1)-\tan(r)

= tan ( 89 ) tan ( 0 ) sin ( 1 ) \frac {\tan (89)-\tan (0)}{\sin (1)}

θ = 89 \Rightarrow \boxed{\theta =89}

Nice

Anish Puthuraya - 7 years, 2 months ago

Log in to reply

Thanks

Shikhar Jaiswal - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...