Some Sum's

Calculus Level pending

n = 1 2 F 1 ( n , 1 2 ; 1 ; 1 ) n = a ln ( b ) \sum_{n=1}^{\infty}\frac{_2F_1 \left(-n, \frac 12; 1; 1 \right)}{n}=a\ln (b)

Solve for a + b a+b and for a,b are prime numbers

Notation: 2 F 1 ( , ; ; ) _2F_1 (\cdot, \cdot; \cdot; \cdot) denotes the hypergeometric function .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Oct 4, 2020

Due to Euler we have 2 F 1 ( a , b ; c ; z ) = Γ ( c ) Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) n d t _{2}F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}\int_0^1 \frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^n}dt and hence we have 2 F 1 ( n , 1 2 ; 1 ; 1 ) = Γ ( 1 ) Γ 2 ( 1 2 ) 0 1 t 1 / 2 ( 1 t ) 1 / 2 ( 1 t ) n d t _{2}F_1\left(-n,\frac{1}{2};1;1\right)=\frac{\Gamma(1)}{\Gamma^2\left(\frac{1}{2}\right)}\int_0^1t^{-1/2}(1-t)^{-1/2}(1-t)^ndt and required sum is n 1 2 F 1 ( n , 1 2 ; 1 ; 1 ) n = 1 π 0 1 t 1 / 2 ( 1 t ) 1 / 2 log t d t \sum_{n\geq 1} \frac{_{2}F_1\left(-n,\frac{1}{2};1;1\right)}{n}=-\frac{1}{\pi}\int_{0}^1t^{-1/2}(1-t)^{-1/2}\log t dt since n 1 n 1 ( 1 t ) n = log t \displaystyle \sum_{n\geq 1} n^{-1}(1-t)^n=-\log t for all t ( 0 , 1 ] t\in\mathbb (0,1] and last integral is easy to observe that lim x 1 / 2 x 0 1 t x 1 ( 1 t ) 1 / 2 d t = lim x 1 / 2 x B ( x , 1 2 ) = lim x 1 / 2 B ( x , 1 2 ) ( ψ 0 ( x ) + ψ 0 ( x + 1 2 ) ) = π ( ψ 0 ( 1 ) + ψ 0 ( 1 2 ) ) = π ( γ γ 2 ln 2 ) = 2 ln 2 \lim_{x\to 1/2}\frac{\partial }{\partial x} \int_0^1t^{x-1}(1-t)^{-1/2}dt=\lim_{x\to 1/2}\frac{\partial}{\partial x}B\left(x,\frac{1}{2}\right)=\lim_{x\to 1/2}B\left(x,\frac{1}{2}\right)\left(\psi_0(x)+\psi_0\left(x+\frac{1}{2}\right)\right)=\pi\left(\psi_0(1)+\psi_0\left(\frac{1}{2}\right)\right)=\pi\left(\gamma-\gamma-2\ln 2\right)=2\ln2 and thus the final answer we have is 2 ln 2 2\ln 2 giving us a + b = 4 a+b=4 .

Alternatively

Due to Guass we have 2 F 1 ( a , b : c , 1 ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) _{2}F_1(a,b:c,1)=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} so that n = 1 2 F 1 ( n , 1 2 ; 1 ; 1 ) n = n = 1 Γ ( 1 ) Γ ( 1 2 + n ) Γ ( 1 + n ) Γ ( 1 2 ) \sum_{n=1}^{\infty}\frac{_{2}F_1\left(-n,\frac{1}{2};1;1\right)}{n}=\sum_{n=1}^{\infty}\frac{\Gamma(1)\Gamma\left(\frac{1}{2}+n\right)}{\Gamma(1+n)\Gamma\left(\frac{1}{2}\right)} since Γ ( n + 1 2 ) = ( 2 n ) ! 4 n n ! π \displaystyle\Gamma\left(n+\frac{1}{2}\right)=\frac{(2n)!}{4^nn!}\sqrt{\pi} so the final sum becomes n = 1 1 n 4 n ( 2 n n ) = 0 1 ( 1 x 1 x 1 x ) d x = 2 ln 2 \sum_{n=1}^{\infty}\frac{1}{n4^n}{2n\choose n}=\int_0^1\left(\frac{1}{x\sqrt{1-x}}-\frac{1}{x}\right)dx=2\ln 2 _

It is required to specify that either a a or b b is prime for unique answer since 2 ln ( 2 ) = ln ( 4 ) 2\ln(2)=\ln(4) gives different answer. For n 1 n\geq 1 the result can also be written as 1 n ln ( 2 2 n ) \displaystyle \frac{1}{n}\ln(2^{2n}) so it doesn't make answer unique

Wonderful Mr.Bhandari,you can advance this result to covert integral of an infinite product to sum.

Aruna Yumlembam - 8 months, 1 week ago

Log in to reply

Sorry , I dont get your ideas howeverr, the problem can be advanced for sure.

Naren Bhandari - 8 months, 1 week ago

Log in to reply

Oh don't worry the argument would be presented by me sooner or later and I am happy for the suggestions.

Aruna Yumlembam - 8 months, 1 week ago

It is the same argument that I used but more general.And you can use it to find an alternate series for the cotangent function.

Aruna Yumlembam - 8 months, 1 week ago

But the limit part,we can solve it without the limit part.

Aruna Yumlembam - 8 months, 1 week ago

Log in to reply

trigonometry substitution t = sin 2 x , cos 2 x t=\sin^2x,\cos^2x and the rest is 0 π 2 ln ( cos 2 x ) d x \int_{0}^{\frac{\pi}{2}} \ln(\cos^2x)dx and rest can be done with classical techniques and most straightforward is by clausen function and cosine fourier series

Naren Bhandari - 8 months, 1 week ago

Ok I get it!!

Aruna Yumlembam - 8 months, 1 week ago

https://brilliant.org/discussions/thread/on-the-summation-of-hypergeometric-series/?ref_id=1596953 Try this discussion ,I have provided the general answer to all values of the function.

Aruna Yumlembam - 8 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...