Some times the simplest way is a division

Algebra Level 3

x 4 6 x 3 + 7 x 2 6 x + 1 = 0 \large { x }^{ 4 }-{ 6x }^{ 3 }+{ 7x }^{ 2 }-{ 6x }+1=0

Note that ( x + 1 x ) 2 = x 2 + 1 x 2 + 2 \left(x + \frac1x\right)^2 = x^2 + \frac1{x^2} + 2 and ( x + 1 x ) 3 = x 3 + 1 x 3 + 3 ( x + 1 x ) \left(x + \frac1x\right)^3 = x^3 + \frac1{x^3} + 3\left(x+ \frac1x\right) . With that in mind, find the sum of real values of x x that satisfy the equation above.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 21, 2015

x 4 6 x 3 + 7 x 2 6 x + 1 = 0 Divide throughout by x 2 . x 2 6 x + 7 6 x + 1 x 2 = 0 x 2 + 1 x 2 6 x 6 x + 7 = 0 ( x 2 + 2 + 1 x 2 ) 6 ( x + 1 x ) + 5 = 0 ( x + 1 x ) 2 6 ( x + 1 x ) + 5 = 0 ( x + 1 x 5 ) ( x + 1 x 1 ) = 0 \begin{aligned} x^4-6x^3+7x^2-6x+1 & = 0 \quad \quad \color{#3D99F6}{\text{Divide throughout by } x^2. } \\ x^2 - 6 x + 7 - \frac{6}{x} + \frac{1}{x^2} & = 0 \\ x^2 + \frac{1}{x^2} - 6x - \frac{6}{x} + \color{#3D99F6}{7} & = 0 \\ \left(x^2 +\color{#3D99F6}{2} + \frac{1}{x^2} \right) - 6 \left(x + \frac{1}{x} \right) + \color{#3D99F6}{5} & = 0 \\ \left(x + \frac{1}{x} \right)^2 - 6 \left(x + \frac{1}{x} \right) + 5 & = 0 \\ \left(x + \frac{1}{x} - 5 \right) \left(x + \frac{1}{x} - 1 \right) & = 0 \end{aligned}

{ x + 1 x 5 = 0 x 2 5 x + 1 = 0 x = 5 ± 21 2 x + 1 x 1 = 0 x 2 x + 1 = 0 No real roots \begin{cases} x + \dfrac{1}{x} - 5 = 0 & \Rightarrow x^2 -5x +1 = 0 & \Rightarrow x = \dfrac{5 \pm \sqrt{21}}{2} \\ x + \dfrac{1}{x} - 1 = 0 & \Rightarrow x^2 -x +1 = 0 & \color{#D61F06}{\text{No real roots}} \end{cases}

Therefore the sum of real roots = 5 = \boxed{5}

In response to Dev Sharma , the plot of the f ( x ) = x 4 6 x 3 + 7 x 2 6 x + 1 f(x) = x^4-6x^3+7x^2-6x+1 is as follows. It is clearly shown that there are only two real roots 5 21 2 = 0.208712153 \dfrac{5 - \sqrt{21}}{2} = 0.208712153 and 5 + 21 2 = 4.791287847 \dfrac{5 + \sqrt{21}}{2} = 4.791287847

using descarte rule of sign, we find all roots are real and their sum should be 6.

Dev Sharma - 5 years, 8 months ago

Log in to reply

Unlikely, because:

x 4 6 x 3 + 7 x 2 6 x + 1 = 0 ( x 2 5 x + 1 ) ( x 2 x + 1 ) = 0 x = { 5 ± 21 2 1 ± i 3 2 \begin{aligned} x^4-6x^3+7x^2-6x+1 & = 0 \\ (x^2-5x+1)(x^2 -x +1) & = 0 \\ x & = \begin{cases} \dfrac{5 \pm \sqrt{21}}{2} \\ \dfrac{1 \pm i \sqrt{3}}{2} \end{cases} \end{aligned}

a 3 = 5 21 2 + 5 + 21 2 + 1 i 3 2 + 1 + i 3 2 = 6 -a_3 = \dfrac{5 - \sqrt{21}}{2} + \dfrac{5 + \sqrt{21}}{2} + \dfrac{1 - i \sqrt{3}}{2} + \dfrac{1 + i \sqrt{3}}{2} = 6

a 0 = 5 21 2 × 5 + 21 2 × 1 i 3 2 × 1 + i 3 2 = 1 a_0 = \dfrac{5 - \sqrt{21}}{2} \times \dfrac{5 + \sqrt{21}}{2} \times \dfrac{1 - i \sqrt{3}}{2} \times \dfrac{1 + i \sqrt{3}}{2} = 1 .

a 1 = 2 5 21 + 2 5 + 21 + 2 1 i 3 + 2 1 + i 3 = 5 + 21 2 + 5 21 2 + 1 + i 3 2 + 1 i 3 2 = 6 -a_1 = \dfrac{2}{5 - \sqrt{21}} + \dfrac{2}{5 + \sqrt{21}} + \dfrac{2}{1 - i \sqrt{3}} + \dfrac{2}{1 + i \sqrt{3}} \\ \quad \quad = \dfrac{5 + \sqrt{21}}{2} + \dfrac{5 - \sqrt{21}}{2} + \dfrac{1 + i \sqrt{3}}{2} + \dfrac{1 - i \sqrt{3}}{2} = 6

If you do the math, you will find that a 2 = 7 a_2 = 7 .

Chew-Seong Cheong - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...