Some Tricky Trigonometry

Geometry Level 5

It is known that cos 2 π 7 3 + cos 4 π 7 3 + cos 8 π 7 3 = 1 a ( b c d 3 ) 3 , \displaystyle \sqrt[3]{\cos\frac{2\pi}{7}} + \sqrt[3]{\cos\frac{4\pi}{7}} + \sqrt[3]{\cos\frac{8\pi}{7}} = \sqrt[3]{\frac{1}{a}\big(b-c\sqrt[3]{d}\big)}, where a , b , c , d a, b, c, d are positive integers, with gcd ( a , b ) = 1 \gcd(a, b) = 1 and d d cube-free.

Find a + b + c + d . a+b+c+d.

Note: Use the convention that x 3 = x 3 \sqrt[3]{x} = - \sqrt[3]{-x} .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Xiang
Feb 18, 2018

To solve this problem, we need to construct a cubic equation with the roots cos 2 π 7 , cos 4 π 7 , cos 8 π 7 \displaystyle \cos\frac{2\pi}{7}, \cos\frac{4\pi}{7}, \cos\frac{8\pi}{7} . Then we find the sum of the cube roots of that equation.

Starting from the 7 t h 7^{\mathrm {th}} roots of unity, the roots of x 7 1 = 0 x^7-1=0 are { e 1 7 2 n π i n = 0 , 1 , , 6 } \displaystyle \left\{ e^{\frac{1}{7}2n\pi i} \space | \space n = 0, 1, \dots, 6\right\}

By factoring x 7 1 = ( x 1 ) ( x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 ) x^7-1=(x-1)(x^6+x^5+x^4+x^3+x^2+x+1)

We know that the roots of x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 = 0 x^6+x^5+x^4+x^3+x^2+x+1=0 are { e 1 7 2 n π i n = 1 , , 6 } \displaystyle \left\{ e^{\frac{1}{7}2n\pi i} \space | \space n = 1, \dots, 6\right\}

Deviding both sides by x 3 x^3 , we have ( x 3 + 1 x 3 ) + ( x 2 + 1 x 2 ) + ( x + 1 x ) = 0 \displaystyle \left(x^3 + \frac{1}{x^3}\right) + \left(x^2 + \frac{1}{x^2}\right) +\left(x + \frac{1}{x}\right) = 0

By the substitution u = x + 1 x \displaystyle u = x + \frac{1}{x} , u 2 2 = x 2 + 1 x 2 \displaystyle u^2 - 2 = x^2 + \frac{1}{x^2} and u 3 3 u = x 3 + 1 x 3 \displaystyle u^3-3u = x^3 + \frac{1}{x^3} ,

the equation reduces to u 3 + u 2 2 u 1 = 0 u^3+u^2-2u-1=0 , and the roots

{ e 1 7 2 n π i + e 1 7 2 n π i n = 1 , , 6 } = { 2 cos 2 n π 7 n = 1 , 2 , 3 } = { 2 cos 2 π 7 , 2 cos 4 π 7 , 2 cos 8 π 7 } \left\{ e^{\frac{1}{7}2n\pi i} + e^{-\frac{1}{7}2n\pi i} \space | \space n = 1, \dots, 6\right\} = \displaystyle \left\{ 2\cos\frac{2n\pi}{7} \space | \space n = 1, 2, 3\right\} = \left\{ 2\cos\frac{2\pi}{7}, 2\cos\frac{4\pi}{7}, 2\cos\frac{8\pi}{7} \right\}

Note that { cos 6 π 7 = cos 8 π 7 cos 4 π 7 = cos 10 π 7 cos 2 π 7 = cos 12 π 7 \left\{ \begin{matrix}\cos\frac{6\pi}{7} = \cos\frac{8\pi}{7} \\ \cos\frac{4\pi}{7} = \cos\frac{10\pi}{7} \\ \cos\frac{2\pi}{7} = \cos\frac{12\pi}{7} \end{matrix}\right. , and the Euler's identity e i θ = cos θ + i sin θ e^{i\theta}=\cos\theta + i\sin\theta

The next step is to find the sum of the cube roots of u 3 + u 2 2 u 1 = 0 u^3+u^2-2u-1=0

Let the roots of u 3 + u 2 2 u 1 = 0 u^3+u^2-2u-1=0 be a 3 a^3 , b 3 b^3 , and c 3 c^3 .

By Vieta's formulae, a 3 + b 3 + c 3 = 1 a^3+b^3+c^3=-1 , and a 3 b 3 + b 3 c 3 + a 3 c 3 = 2 a^3b^3+b^3c^3+a^3c^3=-2 , and a 3 b 3 c 3 = 1 a^3b^3c^3 = 1

Substituding them in

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) 3 3 ( a + b + c ) ( a b + b c + a c ) a^3+b^3+c^3 - 3abc=(a+b+c)^3-3(a+b+c)(ab+bc+ac)

a 3 b 3 + b 3 c 3 + a 3 c 3 3 a 2 b 2 c 2 = ( a b + b c + a c ) 3 3 a b c ( a + b + c ) ( a b + b c + a c ) a^3b^3+b^3c^3+a^3c^3 - 3 a^2b^2c^2 = (ab+bc+ac)^3-3abc(a+b+c)(ab+bc+ac)

and letting p = a + b + c p=a+b+c and q = a b + b c + a c q = ab+bc+ac

we obtain the equations { p 3 = 3 p q 4 q 3 = 3 p q 5 \left\{ \begin{matrix}\displaystyle p^3 =3pq - 4 \\ \displaystyle q^3 = 3pq - 5 \end{matrix}\right.

Multiplying them we get ( p q ) 3 9 ( p q ) 2 + 27 p q 20 = 0 (pq)^3-9(pq)^2+27pq-20=0 , which, by completing the cubes, reduces to ( p q 3 ) 3 + 7 = 0 (pq-3)^3+7=0

So p q = 3 7 3 pq = 3 - \sqrt[3]{7} , hence p = 5 3 7 3 3 p = \sqrt[3]{5-3\sqrt[3]{7}} and q = 4 3 7 3 3 q = \sqrt[3]{4 - 3\sqrt[3]{7} }

Finally we have cos 2 π 7 3 + cos 4 π 7 3 + cos 8 π 7 3 = p 2 3 = 1 2 ( 5 3 7 3 ) 3 \displaystyle \sqrt[3]{\cos\frac{2\pi}{7}} + \sqrt[3]{\cos\frac{4\pi}{7}} + \sqrt[3]{\cos\frac{8\pi}{7}} = \frac{p}{\sqrt[3]{2}} = \boxed{\displaystyle \sqrt[3]{\frac{1}{2}(5-3\sqrt[3]{7})}}

It's a famous ramanujan identity

Harry Jones - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...