i = 0 ∑ ∞ j = 0 ∑ ∞ k = 0 ∑ ∞ ( i + j + k + 2 ) ! i ! j ! k !
If the value of the summation above is equal to B π A for integers A and B , find the value of B − A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
REFORMATTED SORRY
Another application of (2) yields n = 0 ∑ ∞ m = 0 ∑ ∞ k = 0 ∑ ∞ ( n + m + k + 2 ) ! n ! m ! k ! = n = 0 ∑ ∞ m = 0 ∑ ∞ ( n + m + 1 ) ( n + m + 1 ) ! n ! m ! ( 4 ) Now, consider \begin{aligned} a_n &=\sum_{m=0}^nm!(n-m)!\\ &=n!+\sum_{m=0}^{n-1}m!(n-m-1)!\,((n+1)-(m+1))\\ &=n!+(n+1)\sum_{m=0}^{n-1}m!(n-m-1)!-\sum_{m=0}^{n-1}(m+1)!(n-m-1)!\\ &=n!+(n+1)a_{n-1}-(a_n-n!)\tag{5}\\ a_n&=n!+\frac{n+1}{2}a_{n-1}\tag{6}\\ b_n&=\frac{2^n}{n+1}+b_{n-1}\quad\text{where }b_n=\frac{2^n}{(n+1)!}a_n\tag{7} \end{aligned} \$\$ Thus \$\$ a_n=\frac{(n+1)!}{2^n}\sum_{k=0}^n\frac{2^k}{k+1}\tag{8} Using (8), the sum in (4) is n = 0 ∑ ∞ ( n + 1 ) ( n + 1 ) ! a n = n = 0 ∑ ∞ k = 0 ∑ n ( n + 1 ) ( k + 1 ) 2 k − n = k = 0 ∑ ∞ n = k ∑ ∞ ( n + 1 ) ( k + 1 ) 2 k − n = k = 0 ∑ ∞ n = 0 ∑ ∞ ( n + k + 1 ) ( k + 1 ) 2 − n = 6 π 2 + n = 1 ∑ ∞ k = 0 ∑ ∞ n 2 − n ( k + 1 1 − n + k + 1 1 ) = 6 π 2 + n = 1 ∑ ∞ 2 n n H n = 4 π 2 ( 9 )
This can be achieved by noting that 1 2 π 2 = n = 0 ∑ ∞ 2 − n − 1 k = 0 ∑ n ( k n ) ( k + 1 ) 2 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 k = 0 ∑ n ( k + 1 n + 1 ) k + 1 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 k = 0 ∑ n j = 0 ∑ n ( k j ) k + 1 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 j = 0 ∑ n k = 0 ∑ n ( k + 1 j + 1 ) j + 1 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 j = 0 ∑ n j + 1 1 = n = 1 ∑ ∞ 2 − n n 1 j = 1 ∑ n j 1 = n = 1 ∑ ∞ n 2 n H n
Log in to reply
Amazing solution :)
Using this identity this identity:
2 ∑ ∞ ( 2 n ) − 1 = 2 , I think this problem not more than 2. And answer this problem is 0-999.
Amazing! What a tour de force. I got to (4), but then got stuck.
Please correct your math. It's difficult to understand.
Problem Loading...
Note Loading...
Set Loading...
I replace i and j with m and n as I am more comfortable working with them.
Note that
( n + k + 1 ) ! k ! − ( n + k + 2 ) ! ( k + 1 ) ! \ = ( n + k + 2 ) ( n + k + 2 ) ! k ! − ( k + 1 ) ( n + k + 2 ) ! k ! = ( n + 1 ) ( n + k + 2 ) ! k ! ( 1 )
Sum ( 1 ) for k ≥ 0 and divide by n + 1 to get \displaystyle\sum_{k=0}^\infty\frac{k!}{(n+k+2)!}=\frac1{(n+1)(n+1)!}\tag{2}
One application of ( 2 ) gives \begin{aligned} \sum_{n=0}^\infty\sum_{k=0}^\infty\frac{n!k!}{(n+k+2)!} &=\sum_{n=0}^\infty\frac{n!}{(n+1)(n+1)!}\\ &=\sum_{n=0}^\infty\frac1{(n+1)^2}\\ &=\frac{\pi^2}{6}\tag{3} \end{aligned}
Another application of (2) yields n = 0 ∑ ∞ m = 0 ∑ ∞ k = 0 ∑ ∞ ( n + m + k + 2 ) ! n ! m ! k ! = n = 0 ∑ ∞ m = 0 ∑ ∞ ( n + m + 1 ) ( n + m + 1 ) ! n ! m ! ( 4 )
Now, consider \begin{aligned} a_n &=\sum_{m=0}^nm!(n-m)!\\ &=n!+\sum_{m=0}^{n-1}m!(n-m-1)!\,((n+1)-(m+1))\\ &=n!+(n+1)\sum_{m=0}^{n-1}m!(n-m-1)!-\sum_{m=0}^{n-1}(m+1)!(n-m-1)!\\ &=n!+(n+1)a_{n-1}-(a_n-n!)\tag{5}\\ a_n&=n!+\frac{n+1}{2}a_{n-1}\tag{6}\\ b_n&=\frac{2^n}{n+1}+b_{n-1}\quad\text{where }b_n=\frac{2^n}{(n+1)!}a_n\tag{7} \end{aligned}
Thus a n = 2 n ( n + 1 ) ! k = 0 ∑ n k + 1 2 k ( 8 ) Using (8), the sum in (4) is n = 0 ∑ ∞ ( n + 1 ) ( n + 1 ) ! a n = n = 0 ∑ ∞ k = 0 ∑ n ( n + 1 ) ( k + 1 ) 2 k − n = k = 0 ∑ ∞ n = k ∑ ∞ ( n + 1 ) ( k + 1 ) 2 k − n = k = 0 ∑ ∞ n = 0 ∑ ∞ ( n + k + 1 ) ( k + 1 ) 2 − n = 6 π 2 + n = 1 ∑ ∞ k = 0 ∑ ∞ n 2 − n ( k + 1 1 − n + k + 1 1 ) = 6 π 2 + n = 1 ∑ ∞ 2 n n H n = 4 π 2 ( 9 )
This can be achieved by noting that 1 2 π 2 = n = 0 ∑ ∞ 2 − n − 1 k = 0 ∑ n ( k n ) ( k + 1 ) 2 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 k = 0 ∑ n ( k + 1 n + 1 ) k + 1 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 k = 0 ∑ n j = 0 ∑ n ( k j ) k + 1 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 j = 0 ∑ n k = 0 ∑ n ( k + 1 j + 1 ) j + 1 ( − 1 ) k = n = 0 ∑ ∞ 2 − n − 1 n + 1 1 j = 0 ∑ n j + 1 1 = n = 1 ∑ ∞ 2 − n n 1 j = 1 ∑ n j 1 = n = 1 ∑ ∞ n 2 n H n