Some Triple Sum

Calculus Level 5

i = 0 j = 0 k = 0 i ! j ! k ! ( i + j + k + 2 ) ! \large \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{i! j! k!}{(i+j+k+2)!}

If the value of the summation above is equal to π A B \dfrac{\pi^A}{B} for integers A A and B B , find the value of B A B - A .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I replace i i and j j with m m and n n as I am more comfortable working with them.

Note that

k ! ( n + k + 1 ) ! ( k + 1 ) ! ( n + k + 2 ) ! = ( n + k + 2 ) k ! ( n + k + 2 ) ! ( k + 1 ) k ! ( n + k + 2 ) ! \ = ( n + 1 ) k ! ( n + k + 2 ) ! (1) \begin{aligned} \frac{k!}{(n+k+1)!}-\frac{(k+1)!}{(n+k+2)!} &=(n+k+2)\frac{k!}{(n+k+2)!}-(k+1)\frac{k!}{(n+k+2)!}\\\ &=(n+1)\frac{k!}{(n+k+2)!}\tag{1} \end{aligned}

Sum ( 1 ) (1) for k 0 k≥0 and divide by n + 1 n+1 to get \displaystyle\sum_{k=0}^\infty\frac{k!}{(n+k+2)!}=\frac1{(n+1)(n+1)!}\tag{2}

One application of ( 2 ) (2) gives \begin{aligned} \sum_{n=0}^\infty\sum_{k=0}^\infty\frac{n!k!}{(n+k+2)!} &=\sum_{n=0}^\infty\frac{n!}{(n+1)(n+1)!}\\ &=\sum_{n=0}^\infty\frac1{(n+1)^2}\\ &=\frac{\pi^2}{6}\tag{3} \end{aligned}

Another application of (2) yields n = 0 m = 0 k = 0 n ! m ! k ! ( n + m + k + 2 ) ! = n = 0 m = 0 n ! m ! ( n + m + 1 ) ( n + m + 1 ) ! (4) \begin{aligned} \sum_{n=0}^\infty\sum_{m=0}^\infty\sum_{k=0}^\infty\frac{n!m!k!}{(n+m+k+2)!} &=\sum_{n=0}^\infty\sum_{m=0}^\infty\frac{n!m!}{(n+m+1)(n+m+1)!}\tag{4} \end{aligned}

Now, consider \begin{aligned} a_n &=\sum_{m=0}^nm!(n-m)!\\ &=n!+\sum_{m=0}^{n-1}m!(n-m-1)!\,((n+1)-(m+1))\\ &=n!+(n+1)\sum_{m=0}^{n-1}m!(n-m-1)!-\sum_{m=0}^{n-1}(m+1)!(n-m-1)!\\ &=n!+(n+1)a_{n-1}-(a_n-n!)\tag{5}\\ a_n&=n!+\frac{n+1}{2}a_{n-1}\tag{6}\\ b_n&=\frac{2^n}{n+1}+b_{n-1}\quad\text{where }b_n=\frac{2^n}{(n+1)!}a_n\tag{7} \end{aligned}

Thus a n = ( n + 1 ) ! 2 n k = 0 n 2 k k + 1 (8) a_n=\frac{(n+1)!}{2^n}\sum_{k=0}^n\frac{2^k}{k+1}\tag{8} Using (8), the sum in (4) is n = 0 a n ( n + 1 ) ( n + 1 ) ! = n = 0 k = 0 n 2 k n ( n + 1 ) ( k + 1 ) = k = 0 n = k 2 k n ( n + 1 ) ( k + 1 ) = k = 0 n = 0 2 n ( n + k + 1 ) ( k + 1 ) = π 2 6 + n = 1 k = 0 2 n n ( 1 k + 1 1 n + k + 1 ) = π 2 6 + n = 1 H n 2 n n = π 2 4 (9) \begin{aligned} \sum_{n=0}^\infty\frac{a_n}{(n+1)(n+1)!} &=\sum_{n=0}^\infty\sum_{k=0}^n\frac{2^{k-n}}{(n+1)(k+1)}\\ &=\sum_{k=0}^\infty\sum_{n=k}^\infty\frac{2^{k-n}}{(n+1)(k+1)}\\ &=\sum_{k=0}^\infty\sum_{n=0}^\infty\frac{2^{-n}}{(n+k+1)(k+1)}\\ &=\frac{\pi^2}{6}+\sum_{n=1}^\infty\sum_{k=0}^\infty\frac{2^{-n}}{n}\left(\frac1{k+1}-\frac1{n+k+1}\right)\\ &=\frac{\pi^2}{6}+\sum_{n=1}^\infty\frac{H_n}{2^nn}\\ &=\frac{\pi^2}{4}\tag{9} \end{aligned}

This can be achieved by noting that π 2 12 = n = 0 2 n 1 k = 0 n ( n k ) ( 1 ) k ( k + 1 ) 2 = n = 0 2 n 1 1 n + 1 k = 0 n ( n + 1 k + 1 ) ( 1 ) k k + 1 = n = 0 2 n 1 1 n + 1 k = 0 n j = 0 n ( j k ) ( 1 ) k k + 1 = n = 0 2 n 1 1 n + 1 j = 0 n k = 0 n ( j + 1 k + 1 ) ( 1 ) k j + 1 = n = 0 2 n 1 1 n + 1 j = 0 n 1 j + 1 = n = 1 2 n 1 n j = 1 n 1 j = n = 1 H n n 2 n \begin{aligned} \frac{\pi^2}{12} &=\sum_{n=0}^\infty2^{-n-1}\sum_{k=0}^n\binom{n}{k}\frac{(-1)^k}{(k+1)^2}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{k=0}^n\binom{n+1}{k+1}\frac{(-1)^k}{k+1}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{k=0}^n\sum_{j=0}^n\binom{j}{k}\frac{(-1)^k}{k+1}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{j=0}^n\sum_{k=0}^n\binom{j+1}{k+1}\frac{(-1)^k}{j+1}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{j=0}^n\frac1{j+1}\\ &=\sum_{n=1}^\infty2^{-n}\frac1{n}\sum_{j=1}^n\frac1j\\ &=\sum_{n=1}^\infty\frac{H_n}{n2^n} \end{aligned}

REFORMATTED SORRY

Another application of (2) yields n = 0 m = 0 k = 0 n ! m ! k ! ( n + m + k + 2 ) ! = n = 0 m = 0 n ! m ! ( n + m + 1 ) ( n + m + 1 ) ! (4) \begin{aligned} \sum_{n=0}^\infty\sum_{m=0}^\infty\sum_{k=0}^\infty\frac{n!m!k!}{(n+m+k+2)!} &=\sum_{n=0}^\infty\sum_{m=0}^\infty\frac{n!m!}{(n+m+1)(n+m+1)!}\tag{4} \end{aligned} Now, consider \begin{aligned} a_n &=\sum_{m=0}^nm!(n-m)!\\ &=n!+\sum_{m=0}^{n-1}m!(n-m-1)!\,((n+1)-(m+1))\\ &=n!+(n+1)\sum_{m=0}^{n-1}m!(n-m-1)!-\sum_{m=0}^{n-1}(m+1)!(n-m-1)!\\ &=n!+(n+1)a_{n-1}-(a_n-n!)\tag{5}\\ a_n&=n!+\frac{n+1}{2}a_{n-1}\tag{6}\\ b_n&=\frac{2^n}{n+1}+b_{n-1}\quad\text{where }b_n=\frac{2^n}{(n+1)!}a_n\tag{7} \end{aligned} \$\$ Thus \$\$ a_n=\frac{(n+1)!}{2^n}\sum_{k=0}^n\frac{2^k}{k+1}\tag{8} Using (8), the sum in (4) is n = 0 a n ( n + 1 ) ( n + 1 ) ! = n = 0 k = 0 n 2 k n ( n + 1 ) ( k + 1 ) = k = 0 n = k 2 k n ( n + 1 ) ( k + 1 ) = k = 0 n = 0 2 n ( n + k + 1 ) ( k + 1 ) = π 2 6 + n = 1 k = 0 2 n n ( 1 k + 1 1 n + k + 1 ) = π 2 6 + n = 1 H n 2 n n = π 2 4 (9) \begin{aligned} \sum_{n=0}^\infty\frac{a_n}{(n+1)(n+1)!} &=\sum_{n=0}^\infty\sum_{k=0}^n\frac{2^{k-n}}{(n+1)(k+1)}\\ &=\sum_{k=0}^\infty\sum_{n=k}^\infty\frac{2^{k-n}}{(n+1)(k+1)}\\ &=\sum_{k=0}^\infty\sum_{n=0}^\infty\frac{2^{-n}}{(n+k+1)(k+1)}\\ &=\frac{\pi^2}{6}+\sum_{n=1}^\infty\sum_{k=0}^\infty\frac{2^{-n}}{n}\left(\frac1{k+1}-\frac1{n+k+1}\right)\\ &=\frac{\pi^2}{6}+\sum_{n=1}^\infty\frac{H_n}{2^nn}\\ &=\frac{\pi^2}{4}\tag{9} \end{aligned}

This can be achieved by noting that π 2 12 = n = 0 2 n 1 k = 0 n ( n k ) ( 1 ) k ( k + 1 ) 2 = n = 0 2 n 1 1 n + 1 k = 0 n ( n + 1 k + 1 ) ( 1 ) k k + 1 = n = 0 2 n 1 1 n + 1 k = 0 n j = 0 n ( j k ) ( 1 ) k k + 1 = n = 0 2 n 1 1 n + 1 j = 0 n k = 0 n ( j + 1 k + 1 ) ( 1 ) k j + 1 = n = 0 2 n 1 1 n + 1 j = 0 n 1 j + 1 = n = 1 2 n 1 n j = 1 n 1 j = n = 1 H n n 2 n \begin{aligned} \frac{\pi^2}{12} &=\sum_{n=0}^\infty2^{-n-1}\sum_{k=0}^n\binom{n}{k}\frac{(-1)^k}{(k+1)^2}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{k=0}^n\binom{n+1}{k+1}\frac{(-1)^k}{k+1}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{k=0}^n\sum_{j=0}^n\binom{j}{k}\frac{(-1)^k}{k+1}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{j=0}^n\sum_{k=0}^n\binom{j+1}{k+1}\frac{(-1)^k}{j+1}\\ &=\sum_{n=0}^\infty2^{-n-1}\frac1{n+1}\sum_{j=0}^n\frac1{j+1}\\ &=\sum_{n=1}^\infty2^{-n}\frac1{n}\sum_{j=1}^n\frac1j\\ &=\sum_{n=1}^\infty\frac{H_n}{n2^n} \end{aligned}

A Former Brilliant Member - 7 years, 5 months ago

Log in to reply

Amazing solution :)

Using this identity this identity:

2 ( n 2 ) 1 = 2 \displaystyle \sum_{2}^{\infty} \binom{n}{2}^{-1}=2 , I think this problem not more than 2. And answer this problem is 0-999.

pebrudal zanu - 7 years, 5 months ago

Amazing! What a tour de force. I got to (4), but then got stuck.

Jon Haussmann - 7 years, 5 months ago

Please correct your math. It's difficult to understand.

A Brilliant Member - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...