Something as simple as this

Calculus Level 3

lim x 0 ( 1 x + 1 sin x ) = ? \large \lim_{x\to0} \left( \dfrac1x + \dfrac1{\sin x} \right) = \, ?

+ \infty Does not exist - \infty 0 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

F o r s m a l l a n g l e S i n ( x ) x lim x 0 ( 1 x + 1 x ) = lim x 0 ( 2 x ) R . H . L . = lim x 0 + ( 1 x + 1 sin x ) = ( 1 0 + + 1 0 + ) = + L . H . L . = lim x 0 ( 1 0 + 1 0 ) = R . H . L . L . H . L . = > L i m i t d o e s n o t e x i s t For\quad small\quad angle\quad Sin(x)\approx x\\ \lim _{ x\rightarrow { 0 } }{ (\frac { 1 }{ x } +\frac { 1 }{ x } } )=\lim _{ x\rightarrow { 0 } }{ (\frac { 2 }{ x } } )\\ R.H.L.=\lim _{ x\rightarrow { 0 }^{ + } }{ (\frac { 1 }{ x } +\frac { 1 }{ \sin { x } } } )=(\frac { 1 }{ { 0 }^{ + } } +\frac { 1 }{ { 0 }^{ + } } )=+\infty \\ L.H.L.=\lim _{ x\rightarrow { 0 }^{ - } }{ (\frac { 1 }{ { 0 }^{ - } } +\frac { 1 }{ { 0 }^{ - } } } )=-\infty \\ R.H.L.\neq L.H.L.\\ =>\quad Limit\quad does\quad not\quad exist\\ Graph Graph

Moderator note:

Simple standard approach.

lim x 0 ( 1 x + 1 s i n x ) = lim x 0 ( x + s i n x x s i n x ) = \lim_{x \to 0} (\frac{1}{x} + \frac{1}{sinx}) =\lim_{x \to 0} (\frac{x + sin x}{x \cdot sinx}) = lim x 0 2 x x 2 = lim x 0 2 x \lim_{x \to 0} \frac{2x}{x^2} = \lim_{x \to 0} \frac{2}{x} This limit doesn't exist because lim x 0 + 2 x = + and lim x 0 2 x = \lim_{x \to 0^{+}} \frac{2}{x} = +\infty \text{ and } \lim_{x \to 0^{-}} \frac{2}{x} = -\infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...