( 1 + x 2 ) ( 1 + y 2 ) ( x + y ) ( 1 − x y )
If x , y are reals, find the closed form of the product of the maximum and the minimum value of the expression above.
Submit your answer to 2 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
let ( x + y ) = A and ( 1 − x y ) = B
Then
( 1 + x 2 ) ( 1 + y 2 ) = 1 + x 2 + y 2 + x 2 y 2
= 1 − 2 x y + x 2 y 2 + x 2 + 2 x y + y 2
= ( 1 − x y ) 2 + ( x + y ) 2
= A 2 + B 2
So the expression can be express by
A 2 + B 2 A B
let the above expression as equal to k
then
A 2 + k 1 A B + B 2 = 0
As x, y can only have real values, the discriminant should have value of 0 or above.
therefore
1 / k 2 − 4 ≥ 0
( 2 k − 1 ) ( 2 k + 1 ) ≤ 0
∴ − 1 / 2 ≤ k ≤ 1 / 2
so the answer is − 0 . 5 × 0 . 5 = − 0 . 2 5
Try this:
Let P denote the expression above. Then ∣ P ∣ = ∣ ( x 2 + 1 ) ( y 2 + 1 ) ( x + y ) ( 1 − x y ) ∣ = ( x + y ) 2 + ( 1 − x y ) 2 ∣ ( x + y ) ( 1 − x y ) ∣ (just expand the denominator).
Using AM-GM inequality we have ( x + y ) 2 + ( 1 − x y ) 2 ≥ 2 ∣ ( x + y ) ( 1 − x y ) ∣ ⇒ 0 ≤ ∣ P ∣ ≤ 2 1 .
Or − 2 1 ≤ P ≤ 2 1 . P can reach 2 1 when ( x ; y ) = ( 0 ; 1 ) and reach − 2 1 when ( x ; y ) = ( 0 ; − 1 ) .
So the answer is 2 1 × ( − 2 1 ) = − 4 1 = − 0 . 2 5 .
Problem Loading...
Note Loading...
Set Loading...
Let x = tan a and y = tan b . Then, we have:
Q = ( 1 + x 2 ) ( 1 + y 2 ) ( x + y ) ( 1 − x y ) = ( 1 + tan 2 a ) ( 1 + tan 2 b ) ( tan a + tan b ) ( 1 − tan a tan b ) = sec 2 a sec 2 b ( tan a + tan b ) ( 1 − tan a tan b ) = cos 2 a cos 2 b ( cos a sin a + cos b sin b ) ( 1 − cos a cos b sin a sin b ) = ( sin a cos b + sin b cos a ) ( cos a cos b − sin a sin b ) = sin ( a + b ) cos ( a + b ) = 2 sin ( 2 ( a + b ) )
⇒ { Q m a x = 2 1 Q m i n = − 2 1 ⇒ Q m a x Q m i n = − 4 1 = − 0 . 2 5