Something Fishy

Algebra Level 5

( x + y ) ( 1 x y ) ( 1 + x 2 ) ( 1 + y 2 ) \large\dfrac{(x+y)(1-xy)}{(1+x^2)(1+y^2)}

If x , y x,y are reals, find the closed form of the product of the maximum and the minimum value of the expression above.

Submit your answer to 2 decimal places.


This problem is part of the set: Max and min .


The answer is -0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 29, 2016

Let x = tan a x = \tan a and y = tan b y = \tan b . Then, we have:

Q = ( x + y ) ( 1 x y ) ( 1 + x 2 ) ( 1 + y 2 ) = ( tan a + tan b ) ( 1 tan a tan b ) ( 1 + tan 2 a ) ( 1 + tan 2 b ) = ( tan a + tan b ) ( 1 tan a tan b ) sec 2 a sec 2 b = cos 2 a cos 2 b ( sin a cos a + sin b cos b ) ( 1 sin a sin b cos a cos b ) = ( sin a cos b + sin b cos a ) ( cos a cos b sin a sin b ) = sin ( a + b ) cos ( a + b ) = sin ( 2 ( a + b ) ) 2 \begin{aligned} Q & = \frac{(x+y)(1-xy)}{(1+x^2)(1+y^2)} \\ & = \frac{(\tan a + \tan b)(1 - \tan a \tan b)}{(1 + \tan^2 a)(1 + \tan^2 b)} \\ & = \frac{(\tan a + \tan b)(1 - \tan a \tan b)}{\sec^2 a \sec^2 b} \\ & = \cos^2 a \cos^2 b \left(\frac{\sin a}{\cos a} + \frac{\sin b}{\cos b} \right) \left(1 - \frac{\sin a \sin b}{\cos a \cos b} \right) \\ & = (\sin a \cos b + \sin b \cos a)(\cos a \cos b - \sin a \sin b) \\ & = \sin (a+b) \cos (a+b) \\ & = \frac{\sin (2(a+b))}{2} \end{aligned}

{ Q m a x = 1 2 Q m i n = 1 2 Q m a x Q m i n = 1 4 = 0.25 \Rightarrow \begin{cases} Q_{max} = \frac{1}{2} \\ Q_{min} = - \frac{1}{2} \end{cases} \quad \Rightarrow Q_{max}Q_{min} = - \frac{1}{4} = \boxed{-0.25}

Jaehyuk Barng
Mar 29, 2016

let ( x + y ) = A (x + y) = A and ( 1 x y ) = B (1 - xy) = B

Then

( 1 + x 2 ) ( 1 + y 2 ) = 1 + x 2 + y 2 + x 2 y 2 (1 + x^2)(1 + y^2) = 1 + x^2 + y^2 + x^2y^2

= 1 2 x y + x 2 y 2 + x 2 + 2 x y + y 2 = 1 - 2xy + x^2y^2 + x^2 + 2xy + y^2

= ( 1 x y ) 2 + ( x + y ) 2 = (1 - xy)^2 + (x + y)^2

= A 2 + B 2 = A^2 + B^2

So the expression can be express by

A B A 2 + B 2 \frac{AB}{A^2 + B^2}

let the above expression as equal to k k

then

A 2 + 1 k A B + B 2 = 0 A^2 + \frac{1}{k} AB + B^2 = 0

As x, y can only have real values, the discriminant should have value of 0 or above.

therefore

1 / k 2 4 0 1/k^2 - 4 \ge 0

( 2 k 1 ) ( 2 k + 1 ) 0 (2k - 1)(2k + 1) \le 0

1 / 2 k 1 / 2 \therefore -1/2 \le k \le 1/2

so the answer is 0.5 × 0.5 = 0.25 -0.5 \times 0.5 = -0.25

Tran Quoc Dat
Apr 1, 2016

Try this:

Let P P denote the expression above. Then P = ( x + y ) ( 1 x y ) ( x 2 + 1 ) ( y 2 + 1 ) = ( x + y ) ( 1 x y ) ( x + y ) 2 + ( 1 x y ) 2 |P|=|\frac{(x+y)(1-xy)}{(x^2+1)(y^2+1)}|=\frac{|(x+y)(1-xy)|}{(x+y)^2+(1-xy)^2} (just expand the denominator).

Using AM-GM inequality we have ( x + y ) 2 + ( 1 x y ) 2 2 ( x + y ) ( 1 x y ) 0 P 1 2 (x+y)^2+(1-xy)^2 \geq 2|(x+y)(1-xy)| \Rightarrow 0 \leq |P| \leq \dfrac 12 .

Or 1 2 P 1 2 -\dfrac 12 \leq P \leq \dfrac 12 . P P can reach 1 2 \dfrac 12 when ( x ; y ) = ( 0 ; 1 ) (x;y)=(0;1) and reach 1 2 -\dfrac 12 when ( x ; y ) = ( 0 ; 1 ) (x;y)=(0;-1) .

So the answer is 1 2 × ( 1 2 ) = 1 4 = 0.25 \dfrac 12 \times (-\dfrac 12) = -\dfrac 14 = \boxed{-0.25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...