something needs to be done

Algebra Level 3

x 2 3 x + 1 = 0 t h e n , f i n d x 3 + 1 x 3 ? { x }^{ 2\quad \quad }-3x+1\quad =\quad 0\\ then,\quad find\quad { x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lawrence Bush
Aug 27, 2014

x 3 + 1 x 3 = ( x + 1 x ) 3 3 x 1 x ( x + 1 x ) x^{3}+\frac{1}{x^{3}}=(x+\frac{1}{x})^{3}-3*x*\frac{1}{x}(x+\frac{1}{x}) .

x 3 + 1 x 3 = ( x + 1 x ) 3 3 ( x + 1 x ) x^{3}+\frac{1}{x^{3}}=(x+\frac{1}{x})^{3}-3*(x+\frac{1}{x}) . If x + 1 x = y x+\frac{1}{x}=y ,then

x 3 + 1 x 3 = y 3 3 y x^{3}+\frac{1}{x^{3}}=y^{3}-3y . Back to our equation.

Divide both sides by x x to get:

x + 1 x = 3 y = 3 x+\frac{1}{x}=3 \Rightarrow y=3 . Easy we get x 3 + 1 x 3 = 18 x^{3}+\frac{1}{x^{3}}=18 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...