Something needs to be reduced

Calculus Level 5

2 π 4 π 2 cot 2017 ( x ) d x = ( 1 ) a ( n = 1 a ( 1 ) n n + ln ( b ) ) \large 2\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\cot^{2017}(x) \ dx = (-1)^{a}\left(\sum^{a}_{n=1}\frac{(-1)^{n}}{n}+\ln(b)\right)

If a a and b b are positive integers satisfying the equation above, find a + b a+b .


The answer is 1010.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
May 3, 2017

2 π 4 π 2 cot 2017 ( x ) d x \large \displaystyle 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{2017}(x) dx

cot ( x ) = u sin ( x ) = 1 u 2 + 1 \color{#20A900} \large \displaystyle \cot(x) = u \implies \sin(x) = \frac{1}{\sqrt{u^2+1}}

csc 2 ( x ) d x = d u d x = sin 2 ( x ) d u d x = 1 u 2 + 1 d u \color{#20A900} \large \displaystyle - \csc^2(x) dx = du \implies dx = - \sin^2(x) du \implies dx = - \frac{1}{u^2+1} du

= 2 1 0 u 2017 u 2 + 1 d u \large \displaystyle = -2 \int_1^0 \frac{u^{2017}}{u^2+1} du

= 2 0 1 u 2017 u 2 + 1 d u \large \displaystyle = 2 \int_0^1 \frac{u^{2017}}{u^2+1} du

= 2 0 1 u 2017 + u 2015 u 2015 u 2013 + . . . u 3 u + u u 2 + 1 d u \large \displaystyle = 2 \int_0^1 \frac{u^{2017} + u^{2015} - u^{2015} - u^{2013} + ... - u^3 - u + u}{u^2+1} du

= 2 0 1 [ u 2017 + u 2015 u 2 + 1 u 2015 + u 2013 u 2 + 1 + . . . u 3 + u u 2 + 1 + u u 2 + 1 ] d u \large \displaystyle = 2 \int_0^1\left [ \frac{u^{2017} + u^{2015}}{u^2+1} - \frac{u^{2015} + u^{2013}}{u^2+1} + ... - \frac{u^3 + u}{u^2+1} + \frac{u}{u^2+1} \right ] du

= 2 0 1 [ u 2015 u 2013 + u 2011 . . . u + u u 2 + 1 ] d u \large \displaystyle = 2 \int_0^1\left [ u^{2015} - u^{2013} + u^{2011} - ... - u + \frac{u}{u^2+1} \right ] du

= 2 [ 1 2016 1 2014 + 1 2012 . . . 1 2 ] + 0 1 2 u u 2 + 1 d u \large \displaystyle = 2 \left [ \frac{1}{2016} - \frac{1}{2014} + \frac{1}{2012} - ... - \frac{1}{2} \right ] + \int_0^1 \frac{2u}{u^2+1} du

= n = 1 1008 ( 1 ) n n + ln ( u 2 + 1 ) 0 1 \large \displaystyle = \sum_{n=1}^{1008} \frac{(-1)^n}{n} + \ln(u^2+1) \Bigg| _0^1

= n = 1 1008 ( 1 ) n n + ln ( 2 ) \color{#20A900} \boxed{ \large \displaystyle = \sum_{n=1}^{1008} \frac{(-1)^n}{n} + \ln(2) }

Then:

a = 1008 , b = 2 , a + b = 1010 \color{#3D99F6} \large \displaystyle a = 1008, b = 2, \boxed{\large \displaystyle a+b=1010}

The integral can be solved using the reduction formula below:

π 4 π 2 cot k x d x = cot k 1 x k 1 π 4 π 2 π 4 π 2 cot k 2 x d x = 1 k 1 π 4 π 2 cot k 2 x d x \begin{aligned} \int_\frac \pi 4^\frac \pi 2\cot^k x \ dx & = - \frac {\cot^{k-1} x}{k-1} \bigg|_\frac \pi 4^\frac \pi 2 - \int _\frac \pi 4^\frac \pi 2 \cot^{k-2} x \ dx = \frac 1{k-1} - \int _\frac \pi 4^\frac \pi 2 \cot^{k-2} x \ dx \end{aligned}

Let I k = 2 π 4 π 2 cot k x d x \displaystyle I_k = 2 \int_\frac \pi 4^\frac \pi 2\cot^k x \ dx ; then we have I k = 2 k 1 I k 2 \displaystyle I_k = \frac 2{k-1} - I_{k-2} .

I 1 = 2 π 4 π 2 cot x d x = ln 2 I 3 = ( 1 ) ( 1 + ln 2 ) I 5 = ( 1 + 1 2 + ln 2 ) I 7 = ( 1 ) ( 1 + 1 2 1 3 + ln 2 ) = I 2 a + 1 = ( 1 ) a ( n = 1 a ( 1 ) n n + ln 2 ) I 2017 = ( 1 ) 1008 ( n = 1 1008 ( 1 ) n n + ln 2 ) \begin{aligned} I_1 & = 2 \int_\frac \pi 4^\frac \pi 2\cot x \ dx = \ln 2 \\ I_3 & = (-1)(-1 + \ln 2) \\ I_5 & = \left(-1+ \frac 12 + \ln 2\right) \\ I_7 & =(-1)\left(-1+ \frac 12 - \frac 13 + \ln 2 \right) \\ \cdots & = \cdots \\ \implies I_{2a+1} & =(-1)^a \left( \sum_{n=1}^a \frac {(-1)^n}n + \ln 2 \right) \\ \implies I_{2017} & =(-1)^{\color{#3D99F6}1008} \left( \sum_{n=1}^{\color{#3D99F6}1008} \frac {(-1)^n}n + \ln {\color{#3D99F6}2} \right) \end{aligned}

a + b = 1008 + 2 = 1010 \implies a + b = 1008 + 2 = \boxed{1010}

@Tommy Li , it should be:

2 π 4 π 2 cot 2017 ( x ) d x = ( 1 ) a ( n = 1 a ( 1 ) n n + ln ( b ) ) \large 2\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\cot^{2017}(x) \ dx = (-1)^a \left(\sum^{a}_{n=1}\frac{(-1)^{n}}{n}+\ln(b) \right)

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

Yes , I ignored ( 1 ) 1008 (-1)^{1008} because it equals to 1 1 . However, the equation above is more complete and it maybe easier to let others to understand the problem . So, I will change it.

Tommy Li - 4 years, 1 month ago

Log in to reply

Yes, you are right. I didn't notice that. Nice problem.

Chew-Seong Cheong - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...