2 ∫ 4 π 2 π cot 2 0 1 7 ( x ) d x = ( − 1 ) a ⎝ ⎛ n = 1 ∑ a n ( − 1 ) n + ln ( b ) ⎠ ⎞
If a and b are positive integers satisfying the equation above, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integral can be solved using the reduction formula below:
∫ 4 π 2 π cot k x d x = − k − 1 cot k − 1 x ∣ ∣ ∣ ∣ 4 π 2 π − ∫ 4 π 2 π cot k − 2 x d x = k − 1 1 − ∫ 4 π 2 π cot k − 2 x d x
Let I k = 2 ∫ 4 π 2 π cot k x d x ; then we have I k = k − 1 2 − I k − 2 .
I 1 I 3 I 5 I 7 ⋯ ⟹ I 2 a + 1 ⟹ I 2 0 1 7 = 2 ∫ 4 π 2 π cot x d x = ln 2 = ( − 1 ) ( − 1 + ln 2 ) = ( − 1 + 2 1 + ln 2 ) = ( − 1 ) ( − 1 + 2 1 − 3 1 + ln 2 ) = ⋯ = ( − 1 ) a ( n = 1 ∑ a n ( − 1 ) n + ln 2 ) = ( − 1 ) 1 0 0 8 ( n = 1 ∑ 1 0 0 8 n ( − 1 ) n + ln 2 )
⟹ a + b = 1 0 0 8 + 2 = 1 0 1 0
@Tommy Li , it should be:
2 ∫ 4 π 2 π cot 2 0 1 7 ( x ) d x = ( − 1 ) a ⎝ ⎛ n = 1 ∑ a n ( − 1 ) n + ln ( b ) ⎠ ⎞
Log in to reply
Yes , I ignored ( − 1 ) 1 0 0 8 because it equals to 1 . However, the equation above is more complete and it maybe easier to let others to understand the problem . So, I will change it.
Log in to reply
Yes, you are right. I didn't notice that. Nice problem.
Problem Loading...
Note Loading...
Set Loading...
2 ∫ 4 π 2 π cot 2 0 1 7 ( x ) d x
cot ( x ) = u ⟹ sin ( x ) = u 2 + 1 1
− csc 2 ( x ) d x = d u ⟹ d x = − sin 2 ( x ) d u ⟹ d x = − u 2 + 1 1 d u
= − 2 ∫ 1 0 u 2 + 1 u 2 0 1 7 d u
= 2 ∫ 0 1 u 2 + 1 u 2 0 1 7 d u
= 2 ∫ 0 1 u 2 + 1 u 2 0 1 7 + u 2 0 1 5 − u 2 0 1 5 − u 2 0 1 3 + . . . − u 3 − u + u d u
= 2 ∫ 0 1 [ u 2 + 1 u 2 0 1 7 + u 2 0 1 5 − u 2 + 1 u 2 0 1 5 + u 2 0 1 3 + . . . − u 2 + 1 u 3 + u + u 2 + 1 u ] d u
= 2 ∫ 0 1 [ u 2 0 1 5 − u 2 0 1 3 + u 2 0 1 1 − . . . − u + u 2 + 1 u ] d u
= 2 [ 2 0 1 6 1 − 2 0 1 4 1 + 2 0 1 2 1 − . . . − 2 1 ] + ∫ 0 1 u 2 + 1 2 u d u
= n = 1 ∑ 1 0 0 8 n ( − 1 ) n + ln ( u 2 + 1 ) ∣ ∣ ∣ ∣ ∣ 0 1
= n = 1 ∑ 1 0 0 8 n ( − 1 ) n + ln ( 2 )
Then:
a = 1 0 0 8 , b = 2 , a + b = 1 0 1 0