Something New

Calculus Level 4

n = 2 { ζ ( 2 n 1 ) } = ? \large \sum_{n=2}^{\infty}{\left\{ \zeta(2n-1) \right\}}=?

Notations :


The answer is 0.250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hamza A
Jan 5, 2019

We begin by noting that ζ ( n ) = 1 , n 2 \lfloor\zeta(n)\rfloor=1 \ , \ n \geq 2 .

Therefore our sum is

S = n = 2 ζ ( 2 n 1 ) 1 S=\displaystyle \sum_{n=2}^{\infty}{\zeta(2n-1)-1}

For any n > 1 n>1 we have

ζ ( n ) 1 = 0 x n 1 ( n 1 ) ! d x e x ( e x 1 ) \zeta(n)-1=\int_{0}^{\infty}{\frac{x^{n-1}}{(n-1)!} \cdot \frac{dx}{e^x(e^x-1)}}

Hence after plugging in we obtain

S = n = 2 0 x 2 n 2 ( 2 n 2 ) ! d x e x ( e x 1 ) S=\sum_{n=2}^{\infty}{\int_{0}^{\infty}{\frac{x^{2n-2}}{(2n-2)!}\cdot \frac{dx}{e^x(e^x-1)}}}

We recognize the cosh ( x ) \cosh(x) Taylor Series here:

cosh ( x ) 1 = n = 1 x 2 n ( 2 n ) ! = n = 2 x 2 n 2 ( 2 n 2 ) ! \cosh(x)-1= \sum_{n=1}^{\infty}{\frac{x^{2n}}{(2n)!}} = \sum_{n=2}^{\infty}{\frac{x^{2n-2}}{(2n-2)!}}

Therefore the sum becomes

S = 0 cosh ( x ) 1 e x ( e x 1 ) d x S=\int_{0}^{\infty}{\frac{\cosh(x)-1}{e^x(e^x-1)}dx}

Recall that

cosh x = e x + e x 2 \cosh{x}=\frac{e^x+e^{-x}}{2}

Hence, S = 0 1 + e 2 x 2 e x 2 ( e x 1 ) d x S=\int_{0}^{\infty}{\frac{1+e^{-2x}-2e^{-x}}{2(e^x-1)}dx} = 0 ( e x 1 ) ( e x e 2 x ) 2 ( e x 1 ) d x =\int_{0}^{\infty}{\frac{(e^x-1)(e^{-x}-e^{-2x})}{2(e^x-1)}dx} = 0 e x e x 2 d x =\int_{0}^{\infty}{\frac{e^x-e^{-x}}{2}dx}

Which is easily evaluated to be S = 1 4 = . 250 S=\frac{1}{4}=\boxed{.250}

@Hummus a Is the integral which you used for the zeta function common??? Or else, how did you come up with it???

Aaghaz Mahajan - 2 years, 5 months ago

Log in to reply

It is not "common" but it is easily derived from the zeta-gamma function product

ζ ( z ) Γ ( z ) = 0 x z 1 e x 1 d x , R ( z ) > 1 \zeta(z) \Gamma(z)=\displaystyle \int_{0}^{\infty}{\frac{x^{z-1}}{e^x-1}dx} \ , \ \mathfrak{R}(z)>1

Hamza A - 2 years, 5 months ago

Log in to reply

Ohhhh!!! I see it now.......thanks!!!

Aaghaz Mahajan - 2 years, 5 months ago

Blackpenredpen did a popular derivation of this identity on his channel.

James Harbour - 2 years, 4 months ago

Log in to reply

Ohh!!! But I have already derived it myself so its fine....thanks!! :)

Aaghaz Mahajan - 2 years, 4 months ago
Yannis Wu-Yip
Jan 6, 2019

Let S = n = 2 ( ζ ( 2 n 1 ) ) S = \sum\limits_{n=2}^{\infty} \left({\zeta\left(2n-1\right)} \right)

Note that { x } = x x \{x\} = x - \left\lfloor x \right\rfloor and ζ ( n ) 1 < 1 \zeta(n) - 1 < 1 , where n 2 n \geq 2 , so we can write

S = n = 2 k = 1 ( 1 k 2 n 1 1 k 2 n 1 ) = n = 2 k = 2 ( 1 k 2 n 1 ) \begin{aligned} S & = \sum\limits_{n=2}^{\infty} \sum\limits_{k=1}^{\infty} \left(\frac{1}{k^{2n-1}}-\left\lfloor \frac{1}{k^{2n-1}} \right\rfloor \right) \\ & = \sum\limits_{n=2}^{\infty} \sum\limits_{k=2}^{\infty} \left(\frac{1}{k^{2n-1}}\right) \end{aligned}

Note this can be expanded and rearranged into a sum of geometric series:

S = ( 1 2 3 + 1 2 5 + ) + ( 1 3 3 + 1 3 5 + ) + = k = 2 1 k 3 1 1 k 2 = k = 2 1 k ( k 2 1 ) \begin{aligned} S & = \left(\frac{1}{2^{3}} + \frac{1}{2^{5}} + \cdots \right) + \left(\frac{1}{3^{3}} + \frac{1}{3^{5}} + \cdots \right) + \cdots \\ & = \sum\limits_{k=2}^{\infty} \frac{ \frac{1}{k^{3}} }{1-\frac{1}{k^{2}}} \\ & = \sum\limits_{k=2}^{\infty} \frac{1}{k\left(k^{2}-1\right)} \end{aligned}

We can use partial fractions to decompose this and simplify:

S = k = 2 ( 1 2 ( k + 1 ) + 1 2 ( k 1 ) 1 k ) = k = 3 ( 1 2 k ) + k = 1 ( 1 2 k ) k = 2 ( 1 k ) = 2 k = 3 ( 1 2 k ) + 1 2 ( 1 ) + 1 2 ( 2 ) k = 3 ( 1 k ) 1 2 = 1 4 = 0.25 \begin{aligned} S & = \sum\limits_{k=2}^{\infty} \left( \frac{1}{2\left(k+1\right)} + \frac{1}{2\left(k-1\right)} - \frac{1}{k} \right) \\ & = \sum\limits_{k=3}^{\infty} \left( \frac{1}{2k} \right) + \sum\limits_{k=1}^{\infty} \left( \frac{1}{2k} \right) - \sum\limits_{k=2}^{\infty} \left( \frac{1}{k} \right) \\ & = 2\sum\limits_{k=3}^{\infty} \left( \frac{1}{2k} \right) + \frac{1}{2(1)} + \frac{1}{2(2)} - \sum\limits_{k=3}^{\infty} \left( \frac{1}{k} \right) - \frac{1}{2} \\ & = \frac{1}{4} = \boxed{0.25} \end{aligned}

Aaghaz Mahajan
Jan 5, 2019

This paper discusses these types of identities (from page 15 onward) and other interesting aspects of the Riemann Zeta Function.

Interesting!

Hamza A - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...