Sometimes, its better to adopt a complex way than a simpler one

Geometry Level 5

sin ( x ) + sin ( y ) + sin ( z ) = 0 cos ( x ) + cos ( y ) + cos ( z ) = 0 \sin(x)+\sin(y)+\sin(z)=0 \\ \cos(x)+\cos(y)+\cos(z)=0

Given that x , y , z x,y,z are real numbers satisfying above two equations , evaluate:

tan 2 ( x ) + tan 2 ( y ) + tan 2 ( z ) tan 2 ( x ) tan 2 ( y ) tan 2 ( y ) tan 2 ( z ) tan 2 ( x ) tan 2 ( z ) 3 tan 2 ( x ) tan 2 ( y ) tan 2 ( z ) = ? \begin{aligned} &\tan^2(x)+\tan^2(y)+\tan^2(z) \\ - &\tan^2(x)\tan^2(y)-\tan^2(y)\tan^2(z)-\tan^2(x)\tan^2(z) \\ -&3\tan^2(x)\tan^2(y)\tan^2(z) = \ ? \end{aligned}


This problem is original.


The answer is -3.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Surya Prakash
Dec 15, 2015

I will elaborate the solution very clearly.

Since cos ( x ) + cos ( y ) + cos ( z ) = sin ( x ) + sin ( y ) + sin ( z ) = 0 \color{#D61F06}{\cos(x) + \cos(y) + \cos(z)} = \color{#20A900}{\sin(x) + \sin(y) + \sin(z)} = 0 .

( cos ( x ) + cos ( y ) + cos ( z ) ) + i ( sin ( x ) + sin ( y ) + sin ( z ) ) = 0 ( cos ( x ) + i sin ( x ) ) + ( cos ( y ) + i sin ( y ) ) + ( cos ( z ) + i sin ( z ) ) = 0 ( e i x ) + ( e i y ) + ( e i z ) = 0 \implies \left(\color{#D61F06}{\cos(x) + \cos(y) + \cos(z)} \right) + i \left(\color{#20A900}{\sin(x) + \sin(y) + \sin(z)} \right) = 0 \\ \implies \left(\color{#856d4d}{\cos(x) + i \sin(x)}\right) + \left(\color{#3D99F6}{\cos(y) + i\sin(y)} \right)+ \left(\color{#BA33D6}{\cos(z)+ i\sin(z)} \right) = 0 \\ \implies \left(\color{#856d4d}{e^{ix}}\right) + \left(\color{#3D99F6}{e^{iy}} \right)+ \left(\color{#BA33D6}{e^{iz}} \right) = 0

Similarly,

( cos ( x ) + cos ( y ) + cos ( z ) ) i ( sin ( x ) + sin ( y ) + sin ( z ) ) = 0 ( cos ( x ) i sin ( x ) ) + ( cos ( y ) i sin ( y ) ) + ( cos ( z ) i sin ( z ) ) = 0 ( e i x ) + ( e i y ) + ( e i z ) = 0 \implies \left(\color{#D61F06}{\cos(x) + \cos(y) + \cos(z)} \right) - i \left(\color{#20A900}{\sin(x) + \sin(y) + \sin(z)} \right) = 0 \\ \implies \left(\color{#856d4d}{\cos(x) - i \sin(x)}\right) + \left(\color{#3D99F6}{\cos(y) - i\sin(y)} \right)+ \left(\color{#BA33D6}{\cos(z)- i\sin(z)} \right) = 0 \\ \implies \left(\color{#856d4d}{e^{-ix}}\right) + \left(\color{#3D99F6}{e^{-iy}} \right)+ \left(\color{#BA33D6}{e^{-iz}} \right) = 0

Let a = e i x \color{#856d4d}{a=e^{ix}} , b = e i y \color{#3D99F6}{b=e^{iy}} and c = e i z \color{#BA33D6}{c=e^{iz}} .

So, the obtained equations transform into a + b + c = 0 \color{#856d4d}{a} + \color{#3D99F6}{b} + \color{#BA33D6}{c} = 0 and 1 a + 1 b + 1 c = 0 \color{#856d4d}{\dfrac{1}{a}} + \color{#3D99F6}{\dfrac{1}{b}} + \color{#BA33D6}{\dfrac{1}{c}} = 0 .

Consider the second equation,

1 a + 1 b + 1 c = 0 a b + b c + c a a b c = 0 a b + b c + c a = 0 \color{#856d4d}{\dfrac{1}{a}} + \color{#3D99F6}{\dfrac{1}{b}} + \color{#BA33D6}{\dfrac{1}{c}} = 0 \\ \implies \dfrac{\color{#856d4d}{a} \color{#3D99F6}{b} + \color{#3D99F6}{b} \color{#BA33D6}{c} + \color{#BA33D6}{c} \color{#856d4d}{a}}{\color{#856d4d}{a} \color{#3D99F6}{b} \color{#BA33D6}{c}} = 0 \\ \implies \color{#856d4d}{a} \color{#3D99F6}{b} + \color{#3D99F6}{b} \color{#BA33D6}{c} + \color{#BA33D6}{c} \color{#856d4d}{a} = 0

Now since a + b + c = 0 ( a + b + c ) 2 = 0 a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = 0 a 2 + b 2 + c 2 + 2 ( 0 ) = 0 a 2 + b 2 + c 2 = 0 e 2 i x + e 2 i y + e 2 i z = 0 ( cos ( 2 x ) + cos ( 2 y ) + cos ( 2 z ) ) + i ( sin ( 2 x ) + sin ( 2 y ) + sin ( 2 z ) ) = 0 cos ( 2 x ) + cos ( 2 y ) + cos ( 2 z ) = 0 1 tan 2 ( x ) 1 + tan 2 ( x ) + 1 tan 2 ( y ) 1 + tan 2 ( y ) + 1 tan 2 ( z ) 1 + tan 2 ( z ) = 0 c y c ( ( 1 tan 2 ( x ) ) ( 1 + tan 2 ( y ) ) ( 1 + tan 2 ( z ) ) ) = 0 \color{#856d4d}{a} + \color{#3D99F6}{b} + \color{#BA33D6}{c} = 0 \\ \implies \left(\color{#856d4d}{a} + \color{#3D99F6}{b} + \color{#BA33D6}{c} \right)^2 =0 \\ \implies \color{#856d4d}{a^2} + \color{#3D99F6}{b^2} + \color{#BA33D6}{c^2} + 2 \left(\color{#856d4d}{a} \color{#3D99F6}{b} + \color{#3D99F6}{b} \color{#BA33D6}{c} + \color{#BA33D6}{c} \color{#856d4d}{a} \right) = 0 \\ \implies \color{#856d4d}{a^2} + \color{#3D99F6}{b^2} + \color{#BA33D6}{c^2} + 2 \left(0 \right) = 0 \\ \implies \color{#856d4d}{a^2} + \color{#3D99F6}{b^2} + \color{#BA33D6}{c^2} = 0 \\ \implies \color{#856d4d}{e^{2ix}}+\color{#3D99F6}{e^{2iy}} + \color{#BA33D6}{e^{2iz}} = 0 \\ \implies \left(\color{#856d4d}{\cos(2x)} + \color{#3D99F6}{\cos(2y)} + \color{#BA33D6}{\cos(2z)} \right) + i \left(\color{#856d4d}{\sin(2x)} + \color{#3D99F6}{\sin(2y)} + \color{#BA33D6}{\sin(2z)} \right) = 0 \\ \implies \color{#856d4d}{\cos(2x)} + \color{#3D99F6}{\cos(2y)} + \color{#BA33D6}{\cos(2z)} = 0 \\ \implies \color{#856d4d}{\dfrac{1-\tan^2(x)}{1+ \tan^2(x)}} + \color{#3D99F6}{\dfrac{1-\tan^2(y)}{1+ \tan^2(y)}} + \color{#BA33D6}{\dfrac{1-\tan^2(z)}{1+ \tan^2(z)}} = 0 \\ \implies \sum_{cyc} \left(\color{#856d4d}{\left(1-\tan^2(x) \right)} \color{#3D99F6}{\left(1+\tan^2(y)\right)} \color{#BA33D6}{\left(1+\tan^2(z)\right)} \right) = 0

So the result c y c ( ( 1 tan 2 ( x ) ) ( 1 + tan 2 ( y ) ) ( 1 + tan 2 ( z ) ) ) = 0 \sum_{cyc} \left( \color{#856d4d}{\left( 1-\tan^2(x) \right)} \color{#3D99F6}{\left( 1+\tan^2(y) \right)} \color{#BA33D6}{\left(1+\tan^2(z)\right)} \right) = 0 gives our required result to be 3 \color{#6f00ff}{\boxed{-3}} by expanding it.

Moderator note:

Great approach to this problem! What motivated the transformation and the realization of the final algebraic identity?

You elaborated the solution very clearly and colourfully.

PS Sunlight is made of many colours.

Nihar Mahajan - 5 years, 6 months ago
Ashish Gupta
Dec 18, 2015

We get that the question involves complex numbers. Actually, 3 complex numbers. Sum of real parts of all three is equal to sum of complex parts is equal to zero. What we dont get is why the question asks of evaluating an expression involving tan squares. So we bring in three of the simplest complex numbers that satisfy the equation: 1, w, w^2.

Plugging in the values of their tan squares, which are 0, 3, and 3 respectively, we get a solution equal to -3.

Because the question invloves arguments, and angles, and directions. We may generalise the solution by multiplying the roots of unity by e^ix. The symmetry of the system will leave us with the same answer.

Steven Perkins
Dec 15, 2015

I like to simplify where possible. So I started with assuming x=0, and looked for a solution for y and z.

With some thought I determined that z=-y satisfies the sin equation. And I found y=acos(-.5) took care of the cos equation.

Now tan(x)=0, tan(y)=-sqrt(3), tan(z)=sqrt(3) and everything fell out nicely. Most of the terms in the final equation are now 0.

We have 3 + 3 - 9 = -3

That's the solution for a specific case that satisfies the conditions. Do we know if there are other possible solutions to the system of equations?

Calvin Lin Staff - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...