Sometimes we need to reject

Algebra Level 5

Can we say that:

if a b = c d = e f \frac { a }{ b } = \frac { c }{ d } = \frac { e }{ f } , then

a 3 b + 2 c 2 e 3 a e 2 f b 4 + 2 d 2 f 3 b f 3 = a c e b d f ? \frac { { a }^{ 3 }b + 2{ c }^{ 2 }e - 3a{ e }^{ 2 }f }{ { b }^{ 4 }+2{ d }^{ 2 }f-3b{ f }^{ 3 } } =\frac { ace }{ bdf } ?

Given that: a b c d e f a\neq b\neq c\neq d\neq e\neq f

False True Not enough information

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Syed Baqir
Aug 24, 2015

L e t a b = c d = e f = k a = b k , c = d k , e = f k S u b s i t u t i n g , a 3 b + 2 c 2 e 3 a e 2 f b 4 + 2 d 2 f 3 b f 3 = ( b 3 k 3 ) b + 2 ( d 2 k 2 ) ( f k ) 3 ( b k ) ( f 2 k 2 ) f b 4 + 2 d 2 f 3 b f 3 = k 3 ( b 4 + 2 d 2 f 3 b f 3 ) b 4 + 2 d 2 f 3 b f 3 = k 3 = a b c d e f = a c e b d f Let\quad \frac { a }{ b } =\frac { c }{ d } =\frac { e }{ f } =\quad k\\ \therefore \quad a\quad =\quad bk\quad ,\quad c\quad =\quad dk\quad ,\quad e\quad =\quad fk\\ Subsituting,\\ \\ \therefore \frac { { a }^{ 3 }b\quad +\quad 2{ c }^{ 2 }e\quad -\quad 3a{ e }^{ 2 }f }{ { b }^{ 4 }+2{ d }^{ 2 }f-3b{ f }^{ 3 } } =\frac { { (b }^{ 3 }{ k }^{ 3 })b\quad +\quad 2({ d }^{ 2 }{ k }^{ 2 })(fk)\quad -\quad 3(bk)({ f }^{ 2 }{ k }^{ 2 })f }{ b^{ 4 }+2{ d }^{ 2 }f-3b{ f }^{ 3 } } \\ =\frac { { k }^{ 3 }({ b }^{ 4 }+2{ d }^{ 2 }f-3b{ f }^{ 3 }) }{ { b }^{ 4 }+2{ d }^{ 2 }f-3b{ f }^{ 3 } } \quad =\quad { k }^{ 3 }\quad =\quad \frac { a }{ b } *\frac { c }{ d } *\frac { e }{ f } =\frac { ace }{ bdf }

Nope, you still have to ensure that you are not canceling out 0. E.g. if a = b = c = d = e = f = 1 a = b = c= d=e=f=1 , then the LHS is 0 0 \frac{0}{0} while the RHS is 1 1 \frac{1}{1} .

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

I didnot understand why we need to equate all variables to 1.

Syed Baqir - 5 years, 9 months ago

I have edited the problem thanks.

Syed Baqir - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...