A calculus problem by Christian Daang

Calculus Level 4

1 1 + 1 2 1 3 1 4 + 1 5 + 1 6 1 7 1 8 + 1 9 + 1 10 1 11 1 12 + \displaystyle \cfrac{1}{1} + \cfrac{1}{2} - \cfrac{1}{3} - \cfrac{1}{4} + \cfrac{1}{5} + \cfrac{1}{6} - \cfrac{1}{7} - \cfrac{1}{8} + \cfrac{1}{9} + \cfrac{1}{10} - \cfrac{1}{11} - \cfrac{1}{12} + \cdots

Find the closed form of the series above to 3 decimal places.


The answer is 1.13197175367742096432.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 28, 2017

Let the required sum be S S . Consider the following sum:

Z = 1 1 + i 2 1 3 i 4 + 1 5 + i 6 1 7 i 8 + 1 9 + i 10 1 11 i 12 + . . . S = ( Z ) + ( Z ) \begin{aligned} Z & = \frac 11 + \frac i2 - \frac 13 - \frac i4 + \frac 15 + \frac i6 - \frac 17 - \frac i8 + \frac 19 + \frac i{10} - \frac 1{11} - \frac i{12} + ... \\ \implies S & = \Re(Z) + \Im(Z) \end{aligned}

Note that:

Z = 1 1 + i 2 1 3 i 4 + . . . = i 0 1 + i 1 2 + i 2 3 + i 3 4 + . . . = 1 i ( i 1 1 + i 2 2 + i 3 3 + i 4 4 + . . . ) Note that ln ( 1 x ) = k = 1 x k k = i ln ( 1 i ) = i ln ( 2 e π 4 i ) = i ( ln 2 π 4 i ) = π 4 + i ln 2 \begin{aligned} Z & = \frac 11 + \frac i2 - \frac 13 - \frac i4 + ... \\ & = \frac {i^0}1 + \frac {i^1}2 + \frac {i^2}3 + \frac {i^3}4 + ... \\ & = \frac 1i \left( \frac {i^1}1 + \frac {i^2}2 + \frac {i^3}3 + \frac {i^4}4 + ... \right) & \small \color{#3D99F6} \text{Note that }\ln (1-x) = - \sum_{k=1}^\infty \frac {x^k}k \\ & = i \ln (1-i) \\ & = i \ln \left(\sqrt 2 e^{-\frac \pi 4i} \right) \\ & = i \left(\ln \sqrt 2 - \frac \pi 4 i \right) \\ & =\frac \pi 4 + i \ln \sqrt 2 \end{aligned}

S = ( Z ) + ( Z ) = π 4 + ln 2 1.132 \implies S = \Re(Z) + \Im(Z) = \frac \pi 4 + \ln \sqrt 2 \approx \boxed{1.132}

Christian Daang
Mar 27, 2017

the expression above is equal to:

n = 0 ( 1 4 n + 1 + 1 4 n + 2 1 4 n + 3 1 4 n + 4 ) = n = 0 ( 0 1 ( 1 + x x 2 x 3 ) ( x 4 n ) d x ) \begin{aligned} \sum_{n = 0}^{\infty} \left( \cfrac{1}{4n+1} + \cfrac{1}{4n+2} - \cfrac{1}{4n+3} - \cfrac{1}{4n+4}\right) \\ & = \sum_{n = 0}^{\infty} \left( \int_0^1 (1+x-x^2-x^3)\left(x^{4n}\right) \ dx \right) \end{aligned}

If we will try to expand it, it will be like:

( 0 1 ( 1 + x x 2 x 3 ) ( x 0 ) d x ) + ( 0 1 ( 1 + x x 2 x 3 ) ( x 4 ) d x ) + ( 0 1 ( 1 + x x 2 x 3 ) ( x 8 ) d x ) + ( 0 1 ( 1 + x x 2 x 3 ) ( x 12 ) d x ) + ( 0 1 ( 1 + x x 2 x 3 ) ( x 16 ) d x ) + = ( 0 1 ( 1 + x x 2 x 3 ) ( x 0 + x 4 + x 8 + x 12 + x 16 + ) d x ) = ( 0 1 ( 1 + x x 2 x 3 ) ( n = 0 x 4 n ) d x ) = 0 1 ( 1 + x x 2 x 3 ) 1 x 4 d x = 0 1 ( 1 + x ) ( 1 x 2 ) ( 1 x 2 ) ( 1 + x 2 ) d x = 0 1 ( 1 + x ) ( 1 + x 2 ) d x = ln ( x 2 + 1 ) 2 + arctan ( x ) 0 1 = ln ( 2 ) 2 + π 4 1.13197175367742096432 \begin{aligned} \left( \int_0^1 (1+x-x^2-x^3)\left(x^{0}\right) \ dx \right) + \left( \int_0^1 (1+x-x^2-x^3)\left(x^{4}\right) \ dx \right) + \left( \int_0^1 (1+x-x^2-x^3)\left(x^{8}\right) \ dx \right) + \left( \int_0^1 (1+x-x^2-x^3)\left(x^{12}\right) \ dx \right) + \left( \int_0^1 (1+x-x^2-x^3)\left(x^{16}\right) \ dx \right) + \cdots \\ & = \left( \int_0^1 (1+x-x^2-x^3)\left(x^{0} + x^4 + x^8 + x^{12} + x^{16} + \cdots \right) \ dx \right) \\ & = \left( \int_0^1 (1+x-x^2-x^3)\left(\sum_{n = 0}^{\infty} x^{4n}\right) \ dx \right) \\ & = \int_0^1 \cfrac{(1+x-x^2-x^3)}{1 - x^4} \ dx \\ & = \int_0^1 \cfrac{(1+x)(1-x^2)}{(1-x^2)(1+x^2)} \ dx \\ & = \int_0^1 \cfrac{(1+x)}{(1+x^2)} \ dx \\ & = \left. \cfrac{\ln (x^2 + 1)}{2} + \arctan (x) \right |_0^1 \\ & = \boxed{ \cfrac{\ln (2)}{2} + \cfrac{\pi}{4} \approx 1.13197175367742096432 } \end{aligned}


Or

n = 1 ( 1 ( 4 n 3 ) + 1 ( 4 n 2 ) 1 ( 4 n 1 ) 1 ( 4 n ) ) = n = 1 ( 0 1 ( x 4 n 4 + x 4 n 3 x 4 n 2 x 4 n 1 ) d x ) \begin{aligned} \sum_{n = 1} ^{\infty} \left(\cfrac{1}{(4n - 3)} + \cfrac{1}{(4n - 2)} - \cfrac{1}{(4n - 1)} - \cfrac{1}{(4n)}\right) \\ &= \sum_{n = 1}^{\infty} \left(\int_0^1 \left(x^{4n-4} + x^{4n-3} - x^{4n-2} - x^{4n-1}\right) \ dx \right) \end{aligned}

If we will try to expand it, it will be like:

( 0 1 ( x 0 + x 1 x 2 x 3 ) d x ) + ( 0 1 ( x 4 + x 5 x 6 x 7 ) d x ) + ( 0 1 ( x 8 + x 9 x 10 x 11 ) d x ) + = 0 1 ( ( x 0 + x 1 x 2 x 3 ) + ( x 4 + x 5 x 6 x 7 ) + ( x 8 + x 9 x 10 x 11 ) + ) d x = 0 1 ( ( x 0 + x 4 + x 8 + x 12 + ) + ( x 1 + x 5 + x 9 + x 13 + ) ( x 2 + x 6 + x 10 + x 14 + ) ( x 3 + x 7 + x 11 + x 15 + ) ) d x = 0 1 ( n = 1 ( x 4 n 4 + x 4 n 3 x 4 n 2 x 4 n 1 ) ) d x = 0 1 ( 1 ( 1 x 4 ) + x ( 1 x 4 ) x 2 ( 1 x 4 ) x 3 ( 1 x 4 ) ) d x = 0 1 1 + x x 2 x 3 ( 1 x 4 ) d x \begin{aligned} \left(\int_0^1 \left(x^{0} + x^{1} - x^{2} - x^{3}\right) \ dx \right) + \left(\int_0^1 \left(x^{4} + x^{5} - x^{6} - x^{7}\right) \ dx \right) + \left(\int_0^1 \left(x^{8} + x^{9} - x^{10} - x^{11}\right) \ dx \right) + \cdots \\ & = \int_0^1 \left( \big(x^{0} + x^{1} - x^{2} - x^{3}\big) + \big(x^{4} + x^{5} - x^{6} - x^{7}\big) + \big(x^{8} + x^{9} - x^{10} - x^{11}\big) + \cdots \right) \ dx \\ & = \int_0^1 \left( \big(x^{0} + x^{4} + x^{8} + x^{12} + \cdots\big) + \big(x^{1} + x^{5} + x^{9} + x^{13} + \cdots\big) - \big(x^{2} + x^{6} + x^{10} + x^{14} + \cdots \big) - \big(x^{3} + x^{7} + x^{11} + x^{15} + \cdots \big) \right) \ dx \\ & = \int_0^1 \left(\sum_{n = 1}^{\infty} \left(x^{4n-4} + x^{4n-3} - x^{4n-2} - x^{4n-1} \right) \right) \ dx \\ &= \int_0^1 \left( \cfrac{1}{(1-x^4)} + \cfrac{x}{(1-x^4)} - \cfrac{x^2}{(1-x^4)} - \cfrac{x^3}{(1-x^4)} \right) \ dx \\ &= \int_0^1 \cfrac{1+x-x^2 - x^3}{(1-x^4)} \ dx \end{aligned}

And the result is just the same as the result on the above solution.

Ideally, you would justify why we can switch the summation and integration signs. This is due to fubini's theorem

Calvin Lin Staff - 4 years, 2 months ago

Log in to reply

Sir, can you check my explanation? If it somewhat justify the summation and integral signs? :D

Christian Daang - 4 years, 2 months ago

Log in to reply

No. Simply listing them out and then combining them doesn't work.

Essentially, you are interchanging the order of limits, and so you have to be careful with the approach.

Calvin Lin Staff - 4 years, 2 months ago
Kushal Bose
Mar 27, 2017

From well known Log series

ln ( 1 + x ) = x x 2 / 2 + x 3 / 3 x 4 / 4 + . . . . . + \ln (1+x)=x-x^2/2+x^3/3-x^4/4+.....+ \infty

Put x = i x=i and put x = i x=-i where i = 1 i=\sqrt{-1}

Adding these two we get ln ( 1 + i ) + ln ( 1 i ) = 2 ( 1 / 2 1 / 4 + 1 / 6 1 / 8 + . . . . . + ) \ln(1+i) + \ln(1-i) = 2(1/2 - 1/4+1/6-1/8 + ..... + \infty)

Now subtract ln ( 1 + i ) ln ( 1 i ) = 2 i ( 1 1 / 3 + 1 / 5 1 / 7 + . . . . . ) \ln(1+i) - \ln(1-i)=2i(1-1/3+1/5-1/7+..... \infty)

Value of the first series ln ( ( 1 + i ) ( 1 i ) ) / 2 = ln 2 / 2 \ln ((1+i)(1-i))/2=\ln 2/2

Value of the second series ln ( 1 + i 1 i ) / 2 i = l n ( i ) / 2 i = i π / 2 2 i = π 4 \ln(\dfrac{1+i}{1-i})/2i=ln(i)/2i=\dfrac{i \pi/2}{2i}=\dfrac{\pi}{4}

So, total value of the series = 1 2 ln ( 2 ) + π 4 = 1.131 =\dfrac{1}{2} \ln(2) + \dfrac{\pi}{4}=1.131

Note All calculations are not shown.User can easily check it by themselves.

You have to be very careful with the argument

  1. How do you know that the log series is valid when x = 1 |x| = 1 ? When it's stated, it's often given that x < 1 |x| < 1 , and the behaviour at the boundary is unknown. This has to be checked pointwise, and justification given for the convergence (or lack thereof). Why can we substitute in x = i , i x = i, -i , while we cannot use x = 1 x = -1 ?
  2. We do not have an absolutely convergent series, so we cannot just split the terms / recombine them "arbitrarily". Note that in general a i + b i a i + b i \sum a_i + \sum b_i \neq \sum a_i + b_i without further justification. (The justification here is easy, and I'm just asking you to state it for rigour.)
  3. The complex logarithm is multi-valued, so we have to justify why we chose this particular pair of values.

Calvin Lin Staff - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...