1 1 + 2 1 − 3 1 − 4 1 + 5 1 + 6 1 − 7 1 − 8 1 + 9 1 + 1 0 1 − 1 1 1 − 1 2 1 + ⋯
Find the closed form of the series above to 3 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
the expression above is equal to:
n = 0 ∑ ∞ ( 4 n + 1 1 + 4 n + 2 1 − 4 n + 3 1 − 4 n + 4 1 ) = n = 0 ∑ ∞ ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 4 n ) d x )
If we will try to expand it, it will be like:
( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 0 ) d x ) + ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 4 ) d x ) + ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 8 ) d x ) + ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 1 2 ) d x ) + ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 1 6 ) d x ) + ⋯ = ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( x 0 + x 4 + x 8 + x 1 2 + x 1 6 + ⋯ ) d x ) = ( ∫ 0 1 ( 1 + x − x 2 − x 3 ) ( n = 0 ∑ ∞ x 4 n ) d x ) = ∫ 0 1 1 − x 4 ( 1 + x − x 2 − x 3 ) d x = ∫ 0 1 ( 1 − x 2 ) ( 1 + x 2 ) ( 1 + x ) ( 1 − x 2 ) d x = ∫ 0 1 ( 1 + x 2 ) ( 1 + x ) d x = 2 ln ( x 2 + 1 ) + arctan ( x ) ∣ ∣ ∣ ∣ ∣ 0 1 = 2 ln ( 2 ) + 4 π ≈ 1 . 1 3 1 9 7 1 7 5 3 6 7 7 4 2 0 9 6 4 3 2
Or
n = 1 ∑ ∞ ( ( 4 n − 3 ) 1 + ( 4 n − 2 ) 1 − ( 4 n − 1 ) 1 − ( 4 n ) 1 ) = n = 1 ∑ ∞ ( ∫ 0 1 ( x 4 n − 4 + x 4 n − 3 − x 4 n − 2 − x 4 n − 1 ) d x )
If we will try to expand it, it will be like:
( ∫ 0 1 ( x 0 + x 1 − x 2 − x 3 ) d x ) + ( ∫ 0 1 ( x 4 + x 5 − x 6 − x 7 ) d x ) + ( ∫ 0 1 ( x 8 + x 9 − x 1 0 − x 1 1 ) d x ) + ⋯ = ∫ 0 1 ( ( x 0 + x 1 − x 2 − x 3 ) + ( x 4 + x 5 − x 6 − x 7 ) + ( x 8 + x 9 − x 1 0 − x 1 1 ) + ⋯ ) d x = ∫ 0 1 ( ( x 0 + x 4 + x 8 + x 1 2 + ⋯ ) + ( x 1 + x 5 + x 9 + x 1 3 + ⋯ ) − ( x 2 + x 6 + x 1 0 + x 1 4 + ⋯ ) − ( x 3 + x 7 + x 1 1 + x 1 5 + ⋯ ) ) d x = ∫ 0 1 ( n = 1 ∑ ∞ ( x 4 n − 4 + x 4 n − 3 − x 4 n − 2 − x 4 n − 1 ) ) d x = ∫ 0 1 ( ( 1 − x 4 ) 1 + ( 1 − x 4 ) x − ( 1 − x 4 ) x 2 − ( 1 − x 4 ) x 3 ) d x = ∫ 0 1 ( 1 − x 4 ) 1 + x − x 2 − x 3 d x
And the result is just the same as the result on the above solution.
Ideally, you would justify why we can switch the summation and integration signs. This is due to fubini's theorem
Log in to reply
Sir, can you check my explanation? If it somewhat justify the summation and integral signs? :D
Log in to reply
No. Simply listing them out and then combining them doesn't work.
Essentially, you are interchanging the order of limits, and so you have to be careful with the approach.
From well known Log series
ln ( 1 + x ) = x − x 2 / 2 + x 3 / 3 − x 4 / 4 + . . . . . + ∞
Put x = i and put x = − i where i = − 1
Adding these two we get ln ( 1 + i ) + ln ( 1 − i ) = 2 ( 1 / 2 − 1 / 4 + 1 / 6 − 1 / 8 + . . . . . + ∞ )
Now subtract ln ( 1 + i ) − ln ( 1 − i ) = 2 i ( 1 − 1 / 3 + 1 / 5 − 1 / 7 + . . . . . ∞ )
Value of the first series ln ( ( 1 + i ) ( 1 − i ) ) / 2 = ln 2 / 2
Value of the second series ln ( 1 − i 1 + i ) / 2 i = l n ( i ) / 2 i = 2 i i π / 2 = 4 π
So, total value of the series = 2 1 ln ( 2 ) + 4 π = 1 . 1 3 1
Note All calculations are not shown.User can easily check it by themselves.
You have to be very careful with the argument
Problem Loading...
Note Loading...
Set Loading...
Let the required sum be S . Consider the following sum:
Z ⟹ S = 1 1 + 2 i − 3 1 − 4 i + 5 1 + 6 i − 7 1 − 8 i + 9 1 + 1 0 i − 1 1 1 − 1 2 i + . . . = ℜ ( Z ) + ℑ ( Z )
Note that:
Z = 1 1 + 2 i − 3 1 − 4 i + . . . = 1 i 0 + 2 i 1 + 3 i 2 + 4 i 3 + . . . = i 1 ( 1 i 1 + 2 i 2 + 3 i 3 + 4 i 4 + . . . ) = i ln ( 1 − i ) = i ln ( 2 e − 4 π i ) = i ( ln 2 − 4 π i ) = 4 π + i ln 2 Note that ln ( 1 − x ) = − k = 1 ∑ ∞ k x k
⟹ S = ℜ ( Z ) + ℑ ( Z ) = 4 π + ln 2 ≈ 1 . 1 3 2