Somewhere in between...

Algebra Level 5

Let a 1 > a 2 > 0 { a }_{ 1 }>{ a }_{ 2 }>0 and a n + 1 = ( a n a n 1 ) { a }_{ n+1 }=\sqrt { \left( { a }_{ n }{ a }_{ n-1 } \right) } ; n 2 n\ge 2 . If lim n a n = l a 1 m a 2 n \displaystyle{\lim_{ n\rightarrow \infty }{ a }_{ n }}=l{ a }_{ 1 }^{ m }{ a }_{ 2 }^{ n } , then what is the value of l + m + n ? l+m+n?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Stephen Tosh
Jan 4, 2015

The format of the answer allows one to solve this problem without actually calculating the limit, as every term of this sequence a n a_n is of the form a 1 p a 2 q a_1^pa_2^q where p + q = 1 p+q=1 . We can prove this by induction.

Base cases: a 1 = a 1 1 a 2 0 a 2 = a 1 0 a 2 1 a_1=a_1^1a_2^0\\a_2=a_1^0a_2^1 Inductive step:

Assume a n 1 = a 1 w a 2 x , w + x = 1 a n = a 1 y a 2 z , y + z = 1 \begin{aligned}a_{n-1}&=a_1^wa_2^x,&w+x&=1\\a_n&=a_1^ya_2^z,&y+z&=1\end{aligned} Then a n + 1 = a 1 ( w + y ) / 2 a 2 ( x + z ) / 2 w + y 2 + x + z 2 = 1 a_{n+1}=a_1^{(w+y)/2}a_2^{(x+z)/2}\\\frac{w+y}{2}+\frac{x+z}{2}=1 Therefore, l + m + n = 2 l+m+n=2

James Villanueva
Oct 12, 2014

I would modify the last part of the problem to:

If lim n a n = l ( a 2 ) p ( a 1 ) q \displaystyle\lim_{n\rightarrow \infty}a_{ n }=l(a_{ 2 })^{ p }(a_{ 1 })^{ q } ,

then l + p + q \displaystyle l+p+q is

S o l u t i o n \boxed {Solution}

We can find the next five terms of this sequence:

a 3 = a 2 a 1 = [ a 2 a 1 ] 1 2 \displaystyle a_{3}=\sqrt {a_{2}a_{1}} =[a_{2}a_{1}]^{\frac{1}{2}}

a 4 = a 3 a 2 = ( a 2 a 1 ) ( a 2 ) = ( a 2 ) 3 a 1 4 = [ ( a 2 ) 3 a 1 ] 1 4 \displaystyle a_{4}=\sqrt {a_{3}a_{2}} =\sqrt {\displaystyle(\sqrt {a_{2}a_{1} })(a_{ 2 }}) =\sqrt[\displaystyle4]{(a_{2})^{3}a_{1}} =\left[\displaystyle (a_{2})^{3}a_{1}\right]^{\frac{1}{4}}

a 5 = a 4 a 3 = ( ( a 2 ) 3 a 1 4 ) ( a 2 a 1 ) = ( a 2 ) 5 ( a 1 ) 3 8 = [ ( a 2 ) 5 ( a 1 ) 3 ] 1 8 \displaystyle a_{5}=\sqrt {a_{4}a_{3}} =\sqrt {\left(\sqrt[\displaystyle 4]{(a_{2})^{3}a_{1}}\right)(\sqrt {a_{2}a_{1}})} =\sqrt[\displaystyle 8]{(a_{2})^{5}(a_{1})^{3}} =\left[(a_{2})^{5}(a_{1})^{3}\right]^{\frac{1}{8}}

a 6 = a 5 a 4 = ( ( a 2 ) 5 ( a 1 ) 3 8 ) ( ( a 2 ) 3 a 1 4 ) = ( a 2 ) 11 ( a 1 ) 5 16 = [ ( a 2 ) 11 ( a 1 ) 5 ] 1 16 \displaystyle a_{6}=\sqrt {a_{5}a_{4}} =\sqrt {\left(\sqrt[\displaystyle 8]{(a_{2})^{5}(a_{1})^{3}}\right)\left(\sqrt[\displaystyle4]{(a_{2})^{3}a_{1}}\right)} =\sqrt[\displaystyle 16]{(a_{2})^{11}(a_{1})^{5}} =\left[(a_{2})^{11}(a_{1})^{5}\right]^{\frac{1}{16}}

a 7 = a 6 a 5 = ( ( a 2 ) 11 ( a 1 ) 5 16 ) ( ( a 2 ) 5 ( a 1 ) 3 8 ) = ( a 2 ) 21 ( a 1 ) 11 32 = [ ( a 2 ) 21 ( a 1 ) 11 ] 1 32 \displaystyle a_{7}=\sqrt {a_{6}a_{5}} =\sqrt {\left(\sqrt[\displaystyle 16]{(a_{2})^{11}(a_{1})^{5}}\right)\left(\sqrt[\displaystyle 8]{(a_{2})^{5}(a_{1})^{3}}\right)} =\sqrt[\displaystyle 32]{(a_{2})^{21}(a_{1})^{11}} =\left[(a_{2})^{21}(a_{1})^{11}\right]^{\frac{1}{32}}

We can see that (not too easy, it took me a long time) a n = [ ( a 2 ) 2 n 1 + ( 1 ) n 3 ( a 1 ) 2 n 2 + ( 1 ) n 1 3 ] 1 2 n 2 \displaystyle a_{n} = \left[(a_{2})^{\frac{2^{n-1}+(-1)^{n}}{3}} \cdot (a_{1})^{\frac{2^{n-2}+(-1)^{n-1}}{3}}\right]^{\frac{1}{2^{n-2}}}

It can be simplified to:

a n = ( a 2 ) 2 3 + 4 3 ( 1 2 ) n ( a 1 ) 1 3 4 3 ( 1 2 ) n \displaystyle a_{n} = (a_{2})^{\frac{2}{3}+\frac{4}{3} \left(-\frac{1}{2}\right)^{n}} \cdot (a_{1})^{ \frac{1}{3}-\frac{4}{3} \left(-\frac{1}{2}\right)^{n}}

Now, applying the limit:

lim n a n = ( a 2 ) 2 3 ( a 1 ) 1 3 \displaystyle\lim_{n\rightarrow \infty}a_{ n }= (a_{2})^{\frac{2}{3}} \cdot (a_{1})^{\frac{1}{3}}

Therefore, l = 1 , p = 2 3 , q = 1 3 \displaystyle l=1, p= \frac{2}{3}, q= \frac{1}{3} and l + p + q = 2 l+p+q =\boxed {2}

We can put "ln". I think this is bette.

Stephen Curry - 1 year, 7 months ago
Ronak Agarwal
Jan 4, 2015

Firstly we will take l n ( a n ) = b n ln({a}_{n})={b}_{n} and our recurrence becomes :

b n + 2 = b n + 1 + b n 2 {b}_{n+2}=\frac{{b}_{n+1}+{b}_{n}}{2}

Simplifying the recurrence :

2 b n + 2 b n + 1 b n = 0 2{b}_{n+2}-{b}_{n+1}-{b}_{n}=0

Now it's a linear recurrence relation and hence we will find the charecteristic polynomial of it and it comes out to be :

2 x 2 x 1 = 0 2{x}^{2}-x-1=0

It's roots are 1 , 1 2 {1},\frac{-1}{2}

Hence the general solution is of the form :

b n = c 1 + c 2 ( 1 2 ) n \displaystyle {b}_{n}={c}_{1}+{c}_{2}{(\frac{-1}{2})}^{n}

Putting the initial values b 1 {b}_{1} and b 2 {b}_{2} we get :

b n = b 1 + 2 b 2 3 + 2 ( b 1 b 2 ) 3 ( 1 2 ) n 1 \displaystyle {b}_{n}=\frac{{b}_{1}+2{b}_{2}}{3} + \frac{2({b}_{1}-{b}_{2})}{3}{(\frac{-1}{2})}^{n-1}

Applying limit n n tending to infinity we get :

lim n b n = b 1 + 2 b 2 3 \displaystyle \lim _{ n\rightarrow \infty }{ { b }_{ n } } = \frac{{b}_{1}+2{b}_{2}}{3}

Reverting back to our substitution we get :

lim n l n ( a n ) = l n ( a 1 ) + 2 l n ( a 2 ) 3 \displaystyle \lim _{ n\rightarrow \infty }{ { ln(a }_{ n }) } = \frac{ln({a}_{1})+2ln({a}_{2})}{3}

Hence lim n a n = a 1 1 3 a 2 2 3 \displaystyle \lim _{ n\rightarrow \infty }{ { a }_{ n } } = {a}_{1}^{\frac{1}{3}}{a}_{2}^{\frac{2}{3}}

To learn more about the method of solving linear recurrences by charecteristic polynomial method refer to Recurrence relations .

Great solution ! ¨ \ddot\smile

Karthik Kannan - 6 years, 5 months ago

Did the same!

Kartik Sharma - 6 years, 3 months ago
Michael Fischer
Dec 19, 2014

From the equation for a n + 1 a_{n+1} we derive,

i = 3 n a i = ( a 2 a 1 ) ( a 3 a 2 ) ( a 4 a 3 ) . . . ( a n 2 a n 1 ) \prod_{i=3}^{n}a_i =\sqrt{(a_2 a_1)( a_3 a_2)( a_4 a_3) ... (a_{n-2} a_{n-1}) }

i = 3 n a i = a 1 a 2 2 a 3 2 a 4 2 . . . a n 2 2 a n 1 \prod_{i=3}^{n}a_i =\sqrt{ a_1 a_2^2 a_3^2 a_4^2 ... a_{n-2}^2 a_{n-1} }

i = 3 n a i = a 2 a 3 a 4 . . . a n 2 a 1 a n 1 \prod_{i=3}^{n}a_i = a_2 a_3 a_4 ... a_{n-2} \sqrt{ a_1 a_{n-1}}

a n 1 a n = a 2 a 1 a n 1 a_{n-1} a_n = a_2 \sqrt{ a_1 a_{n-1}}

lim n ( a n 1 a n ) = lim n ( a 2 a 1 a n 1 ) \lim_{n \to \infty} {(a_{n-1} a_n) } = \lim_{n \to \infty} (a_2 \sqrt{ a_1 a_{n-1}})

Since lim n ( a n 1 ) = lim n ( a n ) \lim_{n \to \infty} {(a_{n-1}) } = \lim_{n \to \infty} {(a_{n})}

l 2 a 1 2 p a 2 2 q = a 2 a 1 l a 1 p a 2 q l^2 a_1^{2 p} a_2^{2 q} = a_2 \sqrt{a_1} \sqrt{l a_1^p a_2^q} using p,q for m,n resp.

Squaring yields l 4 a 1 4 p a 2 4 q = l a 1 p + 1 a 2 q + 2 l^4 a_1^{4 p} a_2^{4 q} = l a_1^{p+1} a_2^{q+2}

So l=1, p= 1 3 \frac{1}{3} and q = 2 3 \frac{2} {3} and l + p + q = 2 \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...