Song's Complex System

Algebra Level 5

Let a , b , c a, b, c be complex numbers satisfying

a + b + c = a b c = 1 a + b + c = abc = 1

and

a b + b c + a c 3 = 1 a 2 + 1 b 2 + 1 c 2 \frac{ab + bc + ac}{3} = \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}

The sum of absolute values of all possible a b + b c + a c ab + bc + ac can be written as n m \frac{\sqrt{n}}{m} , where n n and m m are positive coprime integers. What is n + m n+m ?

This problem is posed by Zi Song Y.

Details and assumptions

You may read up on Absolute Value .

n n is allowed to be 1.


The answer is 76.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

a b + b c + c a 3 = 1 a 2 + 1 b 2 + 1 c 2 \frac{ab + bc + ca}{3} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}

a b + b c + c a 3 = ( 1 a + 1 b + 1 c ) 2 2 ( a b + b c + c a a b c ) \frac{ab + bc + ca}{3} = (\frac{1}{a} + \frac{1}{b} + \frac{1}{c})^2 - 2(\frac{ab+bc+ca}{abc})

a b + b c + c a 3 = ( a b + b c + c a a b c ) 2 2 \frac{ab + bc + ca}{3} = (\frac{ab + bc + ca}{abc})^2 - 2

a b + b c + c a 3 = ( a b + b c + c a ) 2 2 \frac{ab + bc + ca}{3} = (ab + bc + ca)^2 - 2

Let (ab + bc + ca) = x

x 3 = x 2 2 \frac{x}{3} = x^2 - 2

3 x 2 x 6 = 0 3x^2 - x - 6 = 0

x= 1 ± 73 6 \frac{1 \pm \sqrt{73}}{6}

Therefore, x 1 + x 2 = 73 6 |x_1|+|x_2|= \frac{\sqrt{73}}{6}

n=73 and m=3

Therefore, m+n=76

Ekky Arizaputra
May 20, 2014

Suppose a b = x , b c = y , c a = z ab=x,bc=y,ca=z .Then we have a b c ( a + b + c ) = a b b c + b c c a + c a a b = x y + y z + z x = 1 abc(a+b+c)=ab \cdot bc+bc \cdot ca+ca \cdot ab=xy+yz+zx=1 .From the second equation,we obtain :$$\frac{x+y+z}{3}=\frac{(ab)^2+(bc)^2+(ca)^2}{(abc)^2}$$ $$=x^2+y^2+z^2$$ $$=(x+y+z)^2-2(xy+yz+zx)$$ $$=(x+y+z)^2-2$$Thus,by substituting x + y + z = a x+y+z=a ,we have the quadratic equation:$$3a^2-a-6=0$$ $$|a 1|+|a 2|=\frac{\sqrt{73}+1}{6}+\frac{\sqrt{73}-1}{6}=\frac{\sqrt{73}}{3}$$ So, n + m = 73 + 3 = 76 n+m=73+3=76

All submitted solutions were correct and similar to this one.

Calvin Lin Staff - 7 years ago
Chau Bui
May 20, 2014

possibly feature

Calvin Lin Staff - 7 years ago
Jefferson Irawan
May 20, 2014

From the second equality, we can see that

a b + b c + c a 3 = 1 a 2 + 1 b 2 + 1 c 2 \frac{ab+bc+ca}{3} = \frac{1}{a^2} + \frac{1}{b^2} +\frac {1}{c^2}

= a 2 b 2 + b 2 c 2 + c 2 a 2 = a^2b^2+b^2c^2+c^2a^2 because a b c = ( a b c ) 2 = 1 abc = (abc)^2 = 1

= ( a b + b c + c a ) 2 2 a b c ( a + b + c ) = (ab+bc+ca)^2 -2abc(a+b+c)

= ( a b + b c + c a ) 2 2 = (ab+bc+ca)^2 -2 because a b c = a + b + c = 1 abc = a+b+c = 1

let a b + b c + c a = x ab+bc+ca = x so x 3 = x 2 2 \frac{x}{3} = x^2 -2

so we have a quadratic equation 3 x 2 x 6 = 0 3x^2 - x - 6 = 0

whose solution are 1 ± 1 + 4 × 6 × 3 6 \frac{1 \pm \sqrt{1+4\times6\times3}}{6}

= 1 ± 73 6 =\frac{1 \pm \sqrt{73}}{6}

the absolute value of the solution are

73 + 1 6 \frac{\sqrt{73}+1}{6} and 73 1 6 \frac{\sqrt{73}-1}{6}

and the sum is 73 3 = n m \frac{\sqrt{73}}{3}=\frac{\sqrt{n}}{m}

so m + n = 73 + 3 = 76 m+n= 73+3=76

possibly feature

Calvin Lin Staff - 7 years ago
Marcell Simkó
May 20, 2014

For convenience, let x = a b + a c + b c x=ab+ac+bc .

We need to solve for x x :

x 3 = 1 a 2 + 1 b 2 + 1 c 2 \frac{x}{3}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}

We will transform the RHS to get a function of only x x .

1 a 2 + 1 b 2 + 1 c 2 = 1 a 2 b 2 c 2 ( b 2 c 2 + a 2 c 2 + a 2 b 2 ) = ( ) \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2b^2c^2}\big(b^2c^2+a^2c^2+a^2b^2\big)=\big(*\big)

Since a b c = 1 abc=1 , this equals

( ) = b 2 c 2 + a 2 c 2 + a 2 b 2 = ( ) \big(*\big)=b^2c^2+a^2c^2+a^2b^2=\big(*\big)

Now we use the identity p 2 + q 2 + r 2 = ( p + q + r ) 2 2 p q 2 p r 2 q r p^2+q^2+r^2=(p+q+r)^2-2pq-2pr-2qr with p = b c , q = a c , r = a b p=bc, q=ac,r=ab

( ) = ( b c + a c + a b ) 2 2 a b c 2 2 a b 2 c 2 a 2 b c = ( ) \big(*\big)=(bc+ac+ab)^2-2abc^2-2ab^2c-2a^2bc=\big(*\big)

Because a b c = 1 abc=1 , and also a + b + c = 1 a+b+c=1 , this simplifies to

( ) = ( b c + a c + a b ) 2 2 ( c + b + a ) = x 2 2 \big(*\big)=(bc+ac+ab)^2-2(c+b+a)=x^2-2 .

Now we have the following equation to solve:

x 3 = x 2 2 \frac{x}{3}=x^2-2 , which has the roots x 1 = 1 + 73 6 x_1=\frac{1+\sqrt{73}}{6} and x 2 = 1 73 6 x_2=\frac{1-\sqrt{73}}{6}

x 1 + x 2 = 73 3 |{x_1}|+|{x_2}|=\frac{\sqrt{73}}{3}

Therefore, the solution is 76 76 .

possible feature

Calvin Lin Staff - 7 years ago
Devendra Mittal
May 20, 2014

say ab+bc+ca = x and a^2b^2 + b^2c^2 + c^2a^2 = y

(ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2+2(ab^2c+abc^2+a^2bc) = a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c) = a^2b^2+b^2c^2+c^2a^2+2 so x^2 = y+2

and

\frac{ab+bc+ca}{3} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2} = \frac{y}{1} = y So x = 3y y = \frac{x}{3} so x^2 = \frac{x}{3} + 2 3x^2-x-2 = 0 x = \frac{1 \pm \sqrt{73}}{6} only two possible solution so |x 1| + |x 2| = \frac{\sqrt{73}}{3} so m = 73 n = 3 m+n = 76

Calvin L
May 20, 2014

73+3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...