Sorry calculus, not gonna work here

Algebra Level 4

x 2 y 3 \large x^2y^3

x x and y y are positive reals satisfying 3 x + 4 y = 5 3x+4y = 5 , find the maximum value of the expression above. Do it without using calculus


The answer is 0.1875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Aug 28, 2016

Since x , y > 0 x, y > 0 , we can use the AM-GM inequality as follows:

3 x 2 + 3 x 2 + 4 y 3 + 4 y 3 + 4 y 3 5 ( 3 x 2 ) 2 ( 4 y 3 ) 3 5 Equality occurs when x = 2 3 , y = 3 4 3 x + 4 y 5 ( 3 x 2 ) 2 ( 4 y 3 ) 3 5 5 5 ( 3 x 2 ) 2 ( 4 y 3 ) 3 5 ( 3 x 2 ) 2 ( 4 y 3 ) 3 5 1 ( 3 x 2 ) 2 ( 4 y 3 ) 3 1 16 3 x 2 y 3 1 x 2 y 3 3 16 = 0.1875 \begin{aligned} \frac {3x}2 + \frac {3x}2 + \frac {4y}3 + \frac {4y}3 + \frac {4y}3 & \ge 5 \sqrt [5] {\left(\frac {3x}2\right)^2 \left(\frac {4y}3\right)^3} & \small \color{#3D99F6}{\text{Equality occurs when }x=\frac 23, \ y=\frac 34} \\ 3x + 4y & \ge 5 \sqrt [5] {\left(\frac {3x}2\right)^2 \left(\frac {4y}3\right)^3} \\ 5 & \ge 5 \sqrt [5] {\left(\frac {3x}2\right)^2 \left(\frac {4y}3\right)^3} \\ \implies \sqrt [5] {\left(\frac {3x}2\right)^2 \left(\frac {4y}3\right)^3}& \le 1 \\ \left(\frac {3x}2\right)^2 \left(\frac {4y}3\right)^3 & \le 1 \\ \frac {16}3 x^2y^3 & \le 1 \\ \implies x^2y^3 & \le \frac 3{16} = \boxed{0.1875} \end{aligned}


Calculus gonna work here

Despite the title, Calculus can work here using Lagrange multipliers as follows.

Let F ( x , y , λ ) = x 2 y 3 λ ( 3 x + 4 y 5 ) F(x,y,\lambda) = x^2y^3 - \lambda(3x+4y-5) , then we have:

F x ( x , y , λ ) = F ( x , y , λ ) x = 2 x y 3 3 λ F y ( x , y , λ ) = F ( x , y , λ ) y = 3 x 2 y 2 4 λ F λ ( x , y , λ ) = F ( x , y , λ ) λ = 3 x 4 y + 5 \begin{aligned} F_x (x, y, \lambda) & = \frac {\partial F(x,y,\lambda)}{\partial x} = 2xy^3 - 3\lambda \\ F_y (x, y, \lambda) & = \frac {\partial F(x,y,\lambda)}{\partial y} = 3x^2y^2 - 4\lambda \\ F_\lambda (x, y, \lambda) & = \frac {\partial F(x,y,\lambda)}{\partial \lambda} = -3x-4y+5 \end{aligned}

Equating F x ( x , y , λ ) F_x (x, y, \lambda) , F y ( x , y , λ ) F_y (x, y, \lambda) and F λ ( x , y , λ ) F_\lambda (x, y, \lambda) to 0, we have:

{ 2 x y 3 = 3 λ . . . ( 1 ) 3 x 2 y 2 = 4 λ . . . ( 2 ) 3 x + 4 y = 5 . . . ( 3 ) \begin{cases} 2xy^3 = 3\lambda & ...(1) \\ 3x^2y^2 = 4\lambda & ...(2) \\ 3x+4y = 5 & ...(3) \end{cases}

From ( 1 ) (1) and ( 2 ) : 2 3 x y 3 = 3 4 x 2 y 2 (2): \quad \frac 23 xy^3 = \frac 34 x^2y^2 2 3 y = 3 4 x \implies \frac 23 y = \frac 34 x y = 9 8 x \implies y = \frac 98 x

( 3 ) : 3 x + 9 2 x = 5 (3): \quad 3x + \dfrac 92 x = 5 x = 2 3 \implies x = \frac 23 y = 3 4 \implies y = \frac 34 .

Therefore, the minimum value of x 2 y 3 = ( 2 3 ) 2 ( 3 4 ) 3 = 3 16 = 0.1875 x^2y^3 = \left(\frac 23\right)^2 \left(\frac 34\right)^3 = \frac 3{16} = \boxed{0.1875}

What is wrong with my method?

Apply AM-GM to

2 x + x + 2 y + y + y 5 4 x 2 y 3 5 1 4 x 2 y 3 5 1 4 x 2 y 3 x 2 y 3 1 4 \frac{2x+x+2y+y+y}{5} \geq \sqrt[5]{4x^2y^3} \\ 1 \geq \sqrt[5]{4x^2y^3} \\ 1 \geq 4x^2y^3 \\ x^2y^3 \leq \frac{1}{4}

Arulx Z - 4 years, 9 months ago

Log in to reply

Because you cannot find a ( x , y ) (x,y) pair such that L H S = R H S LHS = RHS . For any inequality to work equality must occur. I have added it in my solution.

Chew-Seong Cheong - 4 years, 9 months ago

The terms of x x and y y that you are taking are weighted...but they should be equal in order to apply AM-GM Inequality

Ravneet Singh - 4 years, 9 months ago

Your In equality is True But For Maximum Value We Need to Divide 3x And 4y in equal Parts.

Rishabh Deep Singh - 4 years, 9 months ago

@Chew-Seong Cheong You always Rocks in Writting Solutions.

Rishabh Deep Singh - 4 years, 9 months ago
Kushal Bose
Sep 1, 2016

Let p = x 2 y 3 p=x^2 y^3

From the given eqaution :

3 x + 4 y = 5 3x+4y=5

Differentiating w.r.t. x we get:

3 + 4 d y d x = 0 3+4\frac{dy}{dx}=0 so d y d x = 3 / 4 \frac{dy}{dx}=-3/4

Now differentiating p p w.r.t. x we get:

d p d x = 2 x y 3 + 3 x 2 y 2 d y d x \frac{dp}{dx}=2xy^3 + 3x^2y^2\frac{dy}{dx}

To get extremum make d p d x = 0 \frac{dp}{dx}=0

So, putting the value of d y d x = 3 / 4 \frac{dy}{dx}=-3/4 we get:

2 x y 3 9 4 x 2 y 2 = 0 2xy^3 - \frac{9}{4}x^2y^2=0

On rearranging we get: 8 y = 9 x 8y=9x

putting this in the linear equation we get the values of x and y where p will attain maximum value.

x = 2 / 3 , y = 3 / 4 x=2/3 , y=3/4

Putting this in p we get the vmaximum value 0.1875 \boxed {0.1875}

relevant wiki: Lagrange multipliers

Let L ( x , y ) = x 2 y 3 + λ ( 3 x + 4 y 5 ) L(x,y) = x^2\cdot y^3 + \lambda(3x + 4y - 5)\Rightarrow d d x L ( x , y ) = 2 x y 3 + 3 λ = 0 \dfrac{d}{dx} L(x,y) = 2x\cdot y^3 + 3\lambda = 0 d d y L ( x , y ) = x 2 3 y 2 + 4 λ = 0. \dfrac{d}{dy} L(x,y) = x^2\cdot 3y^2 + 4\lambda = 0. Substituing λ \lambda in the 2 previous equations,we get 2 x y 3 3 = x 2 3 y 2 4 2 y 3 = 3 x 4 \frac{2x\cdot y^3}{3} = \frac{ x^2\cdot 3y^2}{4} \Rightarrow \frac{2y}{3} = \frac{3x}{4}\Rightarrow y = 9 x 8 . \Rightarrow y = \frac{9x}{8}. Now, substitute y = 9 x 8 y = \frac{9x}{8} in 3 x + 4 y = 5 3 x + 9 x 2 = 5 x = 10 15 = 2 3 y = 3 4 3x + 4y = 5 \rightarrow 3x + \frac{9x}{2} = 5 \rightarrow x =\frac{10}{15} = \frac{2}{3} \rightarrow y = \frac{3}{4} . Furthemore, we can see that the hessian matrix d 2 L ( 2 / 3 , 3 / 4 ) d^2 L(2/3, 3/4) is a defined negative matrix(it's left to the reader as an exercise), so x 2 y 3 x^2\cdot y^3 has a maximum for ( x , y ) = ( 2 / 3 , 3 / 4 ) (x,y) = (2/3, 3/4) which is ( 2 3 ) 2 ( 3 4 ) 3 = 3 16 (\frac{2}{3})^2\cdot(\frac{3}{4})^3 = \frac{3}{16} .

There is no need to use Lagrange multipliers. Just look for the maximum of 1 9 ( 5 4 y ) 2 y 3 \tfrac19(5-4y)^2y^3 over the region 0 y 5 4 0\le y\le \tfrac54 ...

Mark Hennings - 4 years, 9 months ago

Log in to reply

Exact,it's easier like this... It's a bad habit I've picked, becuase of writting big part of that wiki, and use it in other problems... BTW, I can't understand the title of this problem, all branches of mathematics are connected, even the fundamental theorem of algebra is shown generally using calculation.... For this reason I wrote this solution treating with calculus...

Guillermo Templado - 4 years, 9 months ago
Sayantan Dhar
Aug 28, 2016

use am gm inequality by taking the terms 3 x 2 \frac{3x}{2} , 3 x 2 \frac{3x}{2} , 4 y 3 \frac{4y}{3} , 4 y 3 \frac{4y}{3} , 4 y 3 \frac{4y}{3} and you will get the solution

Calculus works

shreyash gupta - 4 years, 9 months ago
Tushar Ahooja
Sep 3, 2016

Assume x=sin a

Y=cos a .

Maximum value of 3 sin a+ 4 cos a=5.

So just find max value of sin^2 a cos^3 a :)

Ameya Anjarlekar
Sep 3, 2016

Use lagrange multipliers

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...