Sounds familiar?

Calculus Level 3

lim n n 2 2 2 cos 2 π n = ? \large \lim_{n \to \infty} \frac{n}{2}\sqrt {2 - 2 \cos \frac{2 \pi}{n} } = ?

π e \frac{\pi}{e} \infty e e 0 0 π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Albert Yiyi
Jun 28, 2018

the expression inside the limit is equal to half of perimeter of regular n-gon.

as n n \to \infty , the limit of the shape is a circle with radius = 1, hence limit = C 2 = 2 π 2 = π = \frac{C}{2} = \frac{2\pi}{2} = \pi

nice one, sir

Mehdi K. - 2 years, 11 months ago

@Albert Lau Ohhh WOW!!!!!! This is an AMAZING approach!! I only used the Binomial expansion.......But this was awesome, Sir!!!

Aaghaz Mahajan - 2 years, 11 months ago
Aryaman Maithani
Jun 27, 2018

First off, the problem with the question is that it fails to mention that the angle in the cosine is actually in degrees, converting it to radians, the question can be stated as:

lim n n 2 × 2 2 cos 2 π n \displaystyle\lim_{n \to \infty} \frac{n}{2}\times\sqrt {2 - 2 \cos \frac{2\pi}{n} }

= lim n n 2 × 2 ( 1 cos 2 π n ) =\displaystyle\lim_{n \to \infty} \frac{n}{2}\times\sqrt {2\Bigg(1 - \cos \frac{2\pi}{n}\Bigg)}

Using 1 cos ( 2 θ ) = 2 sin 2 ( θ ) 1-\cos(2\theta) = 2\sin^2(\theta) :

= lim n n 2 × 4 sin 2 π n =\displaystyle\lim_{n \to \infty} \frac{n}{2}\times\sqrt {4\sin^2\frac{\pi}{n}}

= lim n n × sin π n =\displaystyle\lim_{n \to \infty} \frac{n}{\not2}\times\not2\sin\frac{\pi}{n}

Substituting 1 n = h \frac{1}{n}=h

= lim h 0 + sin ( π h ) h =\displaystyle\lim_{h \to 0^+} \frac{\sin(\pi h)}{h}

= lim h 0 + sin ( π h ) ( π h ) × π =\displaystyle\lim_{h \to 0^+} \frac{\sin(\pi h)}{(\pi h)}\times\pi

Using lim x 0 sin x x = 1 \displaystyle\lim_{x \to 0} \frac{\sin x}{x} = 1 :

= π \boxed{\pi}

The angle is in radian.

Chew-Seong Cheong - 2 years, 11 months ago

Log in to reply

Yes, it has now been corrected. The original problem had stated 360 n \frac{360}{n} instead of 2 π n \frac{2\pi}{n} . It had received reports regarding it as well.

Aryaman Maithani - 2 years, 11 months ago

Log in to reply

Sorry, then.

Chew-Seong Cheong - 2 years, 11 months ago
Chew-Seong Cheong
Jun 30, 2018

Similar solution with @Aryaman Maithani

\begin{aligned} L & = \lim_{n \to \infty} \frac n2 \sqrt{2-2\color{#3D99F6}\cos \frac {2\pi}n} & \small \color{#3D99F6} \text{Since }\cos (2\theta) = 1 - 2\sin^2 \theta \\ & = \lim_{n \to \infty} \frac n2 \sqrt{2-2\color{#3D99F6}\left(1-2\sin^2 \frac \pi n\right)} \\ & = \lim_{n \to \infty} \frac n2 \sqrt{4\sin^2 \frac \pi n} \\ & = \lim_{n \to \infty} \frac n \sin^2 \frac \pi n & \small \color{#3D99F6} \text{Multiply up and down by }\frac \pi n. \\ & = \lim_{n \to \infty} \frac {\pi \color{#3D99F6}\sin^2 \frac \pi n}{\color{#3D99F6}\frac \pi n} & \small \color{#3D99F6} \text{Note that }\lim_{x \to 0} \frac {\sin x}x = 1 \\ & = \boxed{\pi} \end{aligned}

Tsungyen Tsai
Jun 29, 2018

Let u = 2 n \displaystyle u=\frac{2}{n} , then

lim n n 2 × 2 2 cos 2 π n = 2 × lim u 0 1 cos π u u \displaystyle \lim_{n\to\infty} \frac{n}{2}\times\sqrt{2-2\cos{\frac{2\pi}{n}}}=\sqrt{2}\times\lim_{u\to 0} \frac{\sqrt{1-\cos{\pi u}}}{u}

Using sin 2 θ = 1 cos 2 θ = ( 1 + cos θ ) ( 1 cos θ ) \displaystyle \sin^2{\theta}=1-\cos^2{\theta}=(1+\cos{\theta})(1-\cos{\theta}) , we get

2 × lim u 0 1 cos π u u = 2 × lim u 0 sin π u u 1 + cos π u = 2 × lim u 0 π cos π u 1 × lim u 0 1 1 + cos π u \displaystyle \sqrt{2}\times\lim_{u\to 0} \frac{\sqrt{1-\cos{\pi u}}}{u}=\sqrt{2}\times\lim_{u\to 0} \frac{\sin{\pi u}}{u\sqrt{1+\cos{\pi u}}}=\sqrt{2}\times\lim_{u\to 0} \frac{\pi \cos{\pi u}}{1}\times\lim_{u\to 0}\frac{1}{\sqrt{1+\cos{\pi u}}}

Finally

lim n n 2 × 2 2 cos 2 π n = 2 × π × 1 2 = π \displaystyle \lim_{n\to\infty} \frac{n}{2}\times\sqrt{2-2\cos{\frac{2\pi}{n}}}=\sqrt{2}\times\pi\times\frac{1}{\sqrt{2}}=\pi

I believe it should be u=2/n, but otherwise great solution.

Matej Pesek - 2 years, 11 months ago

Log in to reply

ya, thank you. it should be u = 2/n.

Tsungyen Tsai - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...