Soviet Russian Cosine #1

Geometry Level 3

If the exact value of cos π 5 cos 2 π 5 \displaystyle\cos\frac{\pi}{5} - \cos\frac{2\pi}{5} can be represented in the form a b c \displaystyle\frac{a\sqrt{b}}{c} , and g c d ( a , b , c ) = 1 gcd(a, b, c) = 1 , then find a + b + c a+b+c .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

First note that cos ( π 5 ) cos ( 2 π 5 ) = cos ( π 5 ) + cos ( 3 π 5 ) . \cos(\frac{\pi}{5}) - \cos(\frac{2\pi}{5}) = \cos(\frac{\pi}{5}) + \cos(\frac{3\pi}{5}).

Now, using the identity cos ( A ) + cos ( B ) = 2 cos ( A + B 2 ) cos ( A B 2 ) \cos(A) + \cos(B) = 2\cos(\frac{A + B}{2})\cos(\frac{A - B}{2}) we see that

cos ( π 5 ) + cos ( 3 π 5 ) = 2 cos ( 2 π 5 ) cos ( π 5 ) = \cos(\frac{\pi}{5}) + \cos(\frac{3\pi}{5}) = 2\cos(\frac{2\pi}{5})\cos(\frac{\pi}{5}) =

2 cos ( 2 π 5 ) cos ( π 5 ) sin ( π 5 ) sin ( π 5 ) = cos ( 2 π 5 ) sin ( 2 π 5 ) sin ( π 5 ) = 1 2 sin ( 4 π 5 ) sin ( π 5 ) = 1 2 , \dfrac{2\cos(\frac{2\pi}{5})\cos(\frac{\pi}{5})\sin(\frac{\pi}{5})}{\sin(\frac{\pi}{5})} = \dfrac{\cos(\frac{2\pi}{5})\sin(\frac{2\pi}{5})}{\sin(\frac{\pi}{5})} = \dfrac{\frac{1}{2}\sin(\frac{4\pi}{5})}{\sin(\frac{\pi}{5})} = \dfrac{1}{2},

since sin ( 4 π 5 ) = sin ( π 5 ) . \sin(\frac{4\pi}{5}) = \sin(\frac{\pi}{5}).

Thus our answer can be written as 1 1 2 , \dfrac{1*\sqrt{1}}{2}, and so a + b + c = 1 + 1 + 2 = 4 . a + b + c = 1 + 1 + 2 = \boxed{4}.

The last step should be sin(4 pi/5), and not cos(4 pi/5).

vishnu c - 6 years, 1 month ago

Log in to reply

Edit made; thanks for catching that. :)

Brian Charlesworth - 6 years, 1 month ago
Mas Mus
Apr 24, 2015

Note that sin α = sin ( π α ) ~~\sin\alpha=\sin\left(\pi-\alpha\right)

2 cos π 5 sin π 5 2 cos 2 π 5 sin π 5 = sin 2 π 5 ( sin 3 π 5 sin π 5 ) 2 sin π 5 ( cos π 5 cos 2 π 5 ) = sin 2 π 5 sin 2 π 5 + sin π 5 = sin π 5 cos π 5 cos 2 π 5 = 1 2 = 1 × 1 2 \begin{array}{c}&2\cos\frac{\pi}{5}~\sin\frac{\pi}{5}-2\cos\frac{2\pi}{5}~\sin\frac{\pi}{5}&=\sin\frac{2\pi}{5}-\left(\sin\frac{3\pi}{5}-\sin\frac{\pi}{5}\right)\\\\2\sin\frac{\pi}{5}\left(\cos\frac{\pi}{5}-\cos\frac{2\pi}{5}\right)&=\sin\frac{2\pi}{5}-\sin\frac{2\pi}{5}+\sin\frac{\pi}{5}=\sin\frac{\pi}{5}\\\\\cos\frac{\pi}{5}-\cos\frac{2\pi}{5}&=\frac{1}{2}=\frac{1\times\sqrt{1}}{2}\end{array}

Thus, the required answer is a + b + c = 1 + 1 + 2 = 4 ~~a+b+c=1+1+2=\boxed{4}

Pi Han Goh
Apr 20, 2015

Because cos ( π A ) = cos ( A ) \cos(\pi - A) = - \cos(A) , cos ( π 5 ) cos ( 2 π 5 ) = cos ( π 5 ) + cos ( 3 π 5 ) \cos \left ( \frac {\pi}{5} \right ) - \cos \left ( \frac {2\pi}{5} \right ) = \cos \left ( \frac {\pi}{5} \right ) + \cos \left ( \frac {3\pi}{5} \right )

I claim the answer is 1 2 \boxed{\frac 1 2} .

Proof : Let ω = cos ( 2 π 5 ) + i sin ( 2 π 5 ) \omega = \cos \left( \frac {2\pi}{5} \right)+ i \sin \left( \frac {2\pi}{5}\right) , then 1 + ω + ω 2 + ω 3 + ω 4 = 0 1+\omega +\omega^2+\omega^3+\omega^4 = 0 . Comparing real parts

1 + cos ( 2 π 5 ) + cos ( 4 π 5 ) + cos ( 6 π 5 ) + cos ( 8 π 5 ) = 0 2 cos ( π 5 ) + 2 cos ( 3 π 5 ) = 1 1 + \cos \left(\frac {2\pi}{5}\right)+ \cos \left(\frac {4\pi}{5} \right)+ \cos \left(\frac {6\pi}{5} \right)+ \cos\left( \frac {8\pi}{5} \right)= 0 \\ \Rightarrow 2\cos \left( \frac {\pi}{5} \right)+ 2 \cos \left( \frac {3\pi}{5}\right) = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...