If the exact value of cos 5 π − cos 5 2 π can be represented in the form c a b , and g c d ( a , b , c ) = 1 , then find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The last step should be sin(4 pi/5), and not cos(4 pi/5).
Note that sin α = sin ( π − α )
2 sin 5 π ( cos 5 π − cos 5 2 π ) cos 5 π − cos 5 2 π 2 cos 5 π sin 5 π − 2 cos 5 2 π sin 5 π = sin 5 2 π − sin 5 2 π + sin 5 π = sin 5 π = 2 1 = 2 1 × 1 = sin 5 2 π − ( sin 5 3 π − sin 5 π )
Thus, the required answer is a + b + c = 1 + 1 + 2 = 4
Because cos ( π − A ) = − cos ( A ) , cos ( 5 π ) − cos ( 5 2 π ) = cos ( 5 π ) + cos ( 5 3 π )
I claim the answer is 2 1 .
Proof : Let ω = cos ( 5 2 π ) + i sin ( 5 2 π ) , then 1 + ω + ω 2 + ω 3 + ω 4 = 0 . Comparing real parts
1 + cos ( 5 2 π ) + cos ( 5 4 π ) + cos ( 5 6 π ) + cos ( 5 8 π ) = 0 ⇒ 2 cos ( 5 π ) + 2 cos ( 5 3 π ) = 1
Problem Loading...
Note Loading...
Set Loading...
First note that cos ( 5 π ) − cos ( 5 2 π ) = cos ( 5 π ) + cos ( 5 3 π ) .
Now, using the identity cos ( A ) + cos ( B ) = 2 cos ( 2 A + B ) cos ( 2 A − B ) we see that
cos ( 5 π ) + cos ( 5 3 π ) = 2 cos ( 5 2 π ) cos ( 5 π ) =
sin ( 5 π ) 2 cos ( 5 2 π ) cos ( 5 π ) sin ( 5 π ) = sin ( 5 π ) cos ( 5 2 π ) sin ( 5 2 π ) = sin ( 5 π ) 2 1 sin ( 5 4 π ) = 2 1 ,
since sin ( 5 4 π ) = sin ( 5 π ) .
Thus our answer can be written as 2 1 ∗ 1 , and so a + b + c = 1 + 1 + 2 = 4 .