Soviet Russian Cosine #2

Geometry Level 3

If the exact value of cos 2 π 7 + cos 4 π 7 + cos 6 π 7 \displaystyle\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7} can be represented in the form ( a ) b c \displaystyle\frac{(-a)\sqrt{b}}{c} , and g c d ( a , b , c ) = 1 gcd(a, b, c) = 1 , then find a + b + c a+b+c .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
Apr 24, 2015

Note that sin ( π α ) = sin α and sin ( π + α ) = sin α ~~\sin\left(\pi-\alpha\right)=\sin\alpha~~\text{and}~~\sin\left(\pi+\alpha\right)=-\sin\alpha

A = 2 cos 2 π 7 sin 2 π 7 = sin 4 π 7 B = 2 cos 4 π 7 sin 2 π 7 = sin 6 π 7 sin 2 π 7 = sin π 7 sin 2 π 7 C = 2 cos 6 π 7 sin 2 π 7 = sin 8 π 7 sin 4 π 7 = sin π 7 sin 4 π 7 A=2\cos\frac{2\pi}{7}~\sin\frac{2\pi}{7}=\sin\frac{4\pi}{7}\\\\B=2\cos\frac{4\pi}{7}~\sin\frac{2\pi}{7}=\sin\frac{6\pi}{7}-\sin\frac{2\pi}{7}=\sin\frac{\pi}{7}-\sin\frac{2\pi}{7}\\\\C=2\cos\frac{6\pi}{7}~\sin\frac{2\pi}{7}=\sin\frac{8\pi}{7}-\sin\frac{4\pi}{7}=-\sin\frac{\pi}{7}-\sin\frac{4\pi}{7}

Adding A , B , C A, B, C we have:

2 sin 2 π 7 ( cos 2 π 7 + cos 4 π 7 + cos 6 π 7 ) = sin 2 π 7 cos 2 π 7 + cos 4 π 7 + cos 6 π 7 = ( 1 ) 1 2 2\sin\frac{2\pi}{7}\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)=-\sin\frac{2\pi}{7}\\\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}=\frac{\left(-1\right)\sqrt{1}}{2}

So, a + b + c = 4 ~~a+b+c=\boxed{4}

and how we are supposed to know the value of -sin2pi/7 in fractional form .......its simply not possible....pls provide appropriate value and edit the question or bring it down...................

Rishabh Mishra - 6 years, 1 month ago

Log in to reply

The solution does not require you to know the value of sin(2 pi/7). In the last step, both sides of the equation are divided by sin(2 pi/7).

Eric Kim - 6 years, 1 month ago

The final expression of the answer, using two 1's in place of one and all that, is truly convoluted. Not fun.

Marta Reece - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...