Its given a triangle ABC and its center of gravity G . Denote the foot of the median from B by M .The line which passes from G parallel to BC intersects AB at T .If , find the value of the angle in degrees.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t M 1 b e t h e m i d p o i n t o f A B a n d M b e t h e m i d p o i n t o f A C . B A C + A C T = B M C + M C M 2 . . . e q 1 . S i n c e B M C = B A C + A B M a n d A C T − M C M 2 = G C T , F r o m e q 1 . , B A C + G C T = B M C = B A C + A B M , H e n c e G C T = A B M . H e n c e B T G C i s c y c l i c . H e n c e T B M = T C A ( e q 2 . ) a n d M B C = C T G . B u t C T G = T C B ( A l t e r n a t e a n g l e s b e t w e e n p a r a l l e l s ) H e n c e T C B = M B C ( e q 3 . ) w h i c h i m p l i e s , T B M + M B C = T C A + T C B ( b y a d d i n g e q 2 . a n d e q 3 . ) H e n c e T r i a n g l e B M 2 C i s i s o c e l e s . H e n c e 2 1 A B = A M 2 = B M 2 = M 2 C W h i c h d i r e c t l y i m p l i e s t h a t A C B = 9 0 d e g r e e s