Special property!

Geometry Level 4

Its given a triangle ABC and its center of gravity G . Denote the foot of the median from B by M .The line which passes from G parallel to BC intersects AB at T .If M G C = A T C \angle MGC = \angle ATC , find the value of the angle A C B \angle ACB in degrees.


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vishnu Vaidya
Mar 1, 2014

L e t M 1 b e t h e m i d p o i n t o f A B a n d M b e t h e m i d p o i n t o f A C . B A C + A C T = B M C + M C M 2 . . . e q 1. S i n c e B M C = B A C + A B M a n d A C T M C M 2 = G C T , F r o m e q 1. , B A C + G C T = B M C = B A C + A B M , H e n c e G C T = A B M . H e n c e B T G C i s c y c l i c . H e n c e T B M = T C A ( e q 2. ) a n d M B C = C T G . B u t C T G = T C B ( A l t e r n a t e a n g l e s b e t w e e n p a r a l l e l s ) H e n c e T C B = M B C ( e q 3. ) w h i c h i m p l i e s , T B M + M B C = T C A + T C B ( b y a d d i n g e q 2. a n d e q 3. ) H e n c e T r i a n g l e B M 2 C i s i s o c e l e s . H e n c e 1 2 A B = A M 2 = B M 2 = M 2 C W h i c h d i r e c t l y i m p l i e s t h a t A C B = 90 d e g r e e s Let\quad M_{ 1 }\quad be\quad the\quad midpoint\quad of\quad AB\quad and\quad M\quad be\quad the\quad midpoint\quad of\quad AC.\\ BAC\quad +\quad ACT\quad =\quad BMC\quad +\quad MCM_{ 2 }...eq\quad 1.\\ Since\quad BMC\quad =\quad BAC\quad +\quad ABM\quad and\quad ACT\quad -\quad MCM_{ 2 }\quad =\quad GCT,\\ From\quad eq\quad 1.,\quad BAC\quad +\quad GCT\quad =\quad BMC\quad =\quad BAC\quad +\quad ABM,\\ Hence\quad GCT\quad =\quad ABM.\\ Hence\quad BTGC\quad is\quad cyclic.\\ Hence\quad TBM\quad =\quad TCA\quad (eq\quad 2.)\quad and\quad MBC\quad =\quad CTG.\\ But\quad CTG\quad =\quad TCB\quad (Alternate\quad angles\quad between\quad parallels)\\ Hence\quad TCB\quad =\quad MBC\quad (eq\quad 3.)\quad which\quad implies,\\ TBM\quad +\quad MBC\quad =\quad TCA\quad +\quad TCB\quad (by\quad adding\quad eq\quad 2.\quad and\quad eq\quad 3.)\\ Hence\quad Triangle\quad BM_{ 2 }C\quad is\quad isoceles.\\ Hence\quad \frac { 1 }{ 2 } AB\quad =\quad AM_{ 2 }\quad =\quad BM_{ 2 }\quad =\quad M_{ 2 }C\\ Which\quad directly\quad implies\quad that\quad ACB\quad =\quad 90\quad degrees

Your ans is make me confused.... Please share fig for this answer

Maulik Raval - 7 years, 2 months ago

i cant understand

Diwakar Yadav - 7 years, 2 months ago
Fox To-ong
Jan 30, 2015

by descarte's theorem we could analyze that angle ACB is a right angle.

Sauvik Mondal
Mar 19, 2014

by simple angle chasing,we see,quadrilateral BTGC is cyclic with TG||BC.so BTGC is isosceles trapezium.so CG=BC.which imples a^2+b^2=c^2

Elaborate please! How did you get the cyclic part?

Himanshu Arora - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...