Special Pythagorean triplet

A Pythagorean triplet is a set of three natural numbers, a < b < c a < b < c , for which,

a 2 + b 2 = c 2 {a}^{2}+{b}^{2}={c}^{2}

For example, 3 2 + 4 2 = 9 + 16 = 25 = 5 2 {3}^{2}+{4}^{2}=9+16=25={5}^{2}

There exists exactly one Pythagorean triplet for which a + b + c = 1000 a + b + c = 1000 .

Find the product a b c abc .


Try other problems here .


The answer is 31875000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ujjwal Rane
Aug 22, 2017

We are looking for an integer sided right angle triangle with perimeter 1000. Let's check if there are any 'basic' right triangles whose perimeter is a factor of 1000.

3 + 4 + 5 = 12 :-(

5 + 12 + 13 = 30 :-(

7 + 24 + 25 = 56 :-(

8 + 15 + 17 = 40 :-) Yes! This is a factor as 40 x 25 = 1000

So scale it up 25 times to get the perimeter 1000, giving sides to be 200, 375, 425. Whose product is 31875000

Just to provide an analytic solution....

With c = 1000 ( a + b ) c = 1000 - (a + b) we require 0 < a < b < 1000 0 \lt a \lt b \lt 1000 such that

a 2 + b 2 = ( 1000 ( a + b ) ) 2 a 2 + b 2 = 100 0 2 2000 ( a + b ) + ( a + b ) 2 a^{2} + b^{2} = (1000 - (a + b))^{2} \Longrightarrow a^{2} + b^{2} = 1000^{2} - 2000(a + b) + (a + b)^{2} \Longrightarrow

0 = 100 0 2 2000 ( a + b ) + 2 a b a b 1000 a 1000 b = 500000 0 = 1000^{2} - 2000(a + b) + 2ab \Longrightarrow ab - 1000a - 1000b = -500000 \Longrightarrow

( a 1000 ) ( b 1000 ) 100 0 2 = 500000 ( a 1000 ) ( b 1000 ) = 500000 (a - 1000)(b - 1000) - 1000^{2} = -500000 \Longrightarrow (a - 1000)(b - 1000) = 500000 \Longrightarrow

( 1000 a ) ( 1000 b ) = 2 5 × 5 6 (1000 - a)(1000 - b) = 2^{5} \times 5^{6} .

Now since 0 < a < b < 1000 0 \lt a \lt b \lt 1000 we require that 0 < ( 1000 b ) < ( 1000 a ) < 1000 0 \lt (1000 - b) \lt (1000 - a) \lt 1000 , so we need to look for pairs of positive integers under these restrictions whose product is 500000 = 2 5 × 5 6 500000 = 2^{5} \times 5^{6} . Given this factorization, the only option is 675 × 800 675 \times 800 , which leads to ( a , b , c ) = ( 200 , 375 , 425 ) (a,b,c) = (200, 375, 425) , and thus a b c = 31875000 abc = \boxed{31875000} .

Arjen Vreugdenhil
Sep 17, 2017

Any Pythagorean triple with a , b , c > 0 a,b,c > 0 can be generated uniquely (up to exchange of a a and b b ) as { a = p 2 q 2 b = 2 p q c = p 2 + q 2 p > q > 0. \begin{cases} a = p^2 - q^2 \\ b = 2pq \\ c = p^2 + q^2\end{cases}\ \ \ \ \ \ \ p > q > 0. Adding these, we find that a + b + c = 2 p ( p + q ) = 1000. a + b + c = 2p(p+q) = 1000. We also have that p < p + q < 2 p p < p + q < 2p . Thus we solve for integers the system { p ( p + q ) = 500 500 > p > 250 , i.e. 22 p 16 \begin{cases} p(p+q) = 500 \\ \sqrt{500} > p > \sqrt{250},\ \ \ \text{i.e.}\ \ \ \ 22 \geq p \geq 16 \end{cases} It is easy to find the only solution to be p = 20 , q = 5 , a = 375 , b = 200 , c = 425. p = 20,\ q = 5,\ a = 375,\ b = 200,\ c = 425. (But we must flip a , b a,b to satisfy the given condition a < b < c a < b < c .) The answer is 200 375 425 = 31 875 000 200 \cdot 375 \cdot 425 = \boxed{31\,875\,000} .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
public class Main {
    public static void main( String[] args ) {
        int c,product;
        for(int a=1;a<1000;a++){
            for (int b=1;b<1000;b++){
                c=(1000-a-b);
                if((a*a+b*b)==c*c) {
                    product=a*b*c;
                    System.out.println("a " + a + " b " + b + " c " + c);
                    System.out.println("Product of a,b and c is "+product);
                }
            }
        }
    }
}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...