Special series

Calculus Level 4

1 + 1 5 + 1 × 3 5 × 10 + 1 × 3 × 5 5 × 10 × 15 + \large 1+\frac { 1 }{ 5 } +\frac { 1\times 3 }{ 5\times 10 } +\frac { 1\times 3\times 5 }{ 5\times 10\times 15 } + \ldots

If the square of the series above equals to a b {\dfrac ab} for coprime positive integers a , b a,b , what is the value of a + b a+b .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jessica Wang
Oct 12, 2015

L i n k Link : Central Binomial Coefficient

P.S. I might post my "obtaining process" of generating function of the Catalan sequence later :)

Let's start from 0 π 2 sin 2 n x d x = ( 2 n n ) 2 2 n × π 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n}x dx =\frac{\left( \begin{matrix} 2n \\ n \end{matrix} \right) }{2^{2n}} \times \frac{\pi}{2}

And from

S = 1 + 1 5 + 1 × 3 5 × 10 + 1 × 3 × 5 5 × 10 × 15 + . . . = 0 ( 2 n n ) 1 0 n \displaystyle S=1+\frac{1}{5}+\frac{1 \times 3}{5 \times 10}+\frac{1 \times 3 \times 5}{5 \times 10 \times 15}+...=\sum _{ 0 }^{ \infty }{ \frac{\left( \begin{matrix} 2n \\ n \end{matrix} \right) }{10^{n}} }

Then

0 0 π 2 2 n 5 n sin 2 n x d x = 0 ( 2 n n ) 1 0 n × π 2 \displaystyle \sum _{ 0 }^{ \infty}{ \int_{0}^{\frac{\pi}{2}} \frac{2^{n}}{5^{n}}\sin^{2n}x dx }= \sum _{ 0 }^{ \infty }{ \frac{\left( \begin{matrix} 2n \\ n \end{matrix} \right) }{10^{n}} } \times \frac{\pi}{2}

= 0 0 π 2 ( 2 5 sin 2 x ) n d x \displaystyle = \sum _{ 0 }^{ \infty }{ \int_{0}^{\frac{\pi}{2}} \left ( \frac{2}{5}\sin^{2}x \right )^{n} dx }

= 0 π 2 0 ( 2 5 sin 2 x ) n d x \displaystyle = \int_{0}^{\frac{\pi}{2}}\sum _{ 0 }^{ \infty }{ \left ( \frac{2}{5}\sin^{2}x \right )^{n} } dx

= 0 π / 2 1 1 2 sin 2 x 5 d x \displaystyle = \int_{0}^{\pi/2} \frac{1}{1-\frac{2\sin^{2}x}{5}}dx

= 0 π / 2 1 1 + 3 tan 2 x 5 d tan x \displaystyle = \int_{0}^{\pi/2} \frac{1}{1+\frac{3\tan^{2}x}{5}}d\tan x

= 5 3 arctan ( 3 5 tan x ) \displaystyle = \sqrt{\frac{5}{3}} \arctan\left ( {\sqrt{\frac{3}{5}}\tan x} \right ) from 0 to π / 2 \pi/2

Hence

5 3 π 2 = S π 2 \displaystyle \sqrt{\frac{5}{3}} \frac{\pi}{2}=S \frac{\pi}{2}

S = 5 3 \displaystyle S=\sqrt{\frac{5}{3}}

5 3 = a b \displaystyle \frac{5}{3}=\frac{a}{b}

a + b = 8 \displaystyle a+b= \boxed{8}

Quince Pan
Jun 14, 2015

First, we simplify the series into powers and factorials by removing the 1 1 at the start and focusing on 1 5 + 1 × 3 5 × 10 + 1 × 3 × 5 5 × 10 × 15 + . . . \frac { 1 }{ 5 } +\frac { 1\times 3 }{ 5\times 10 } +\frac { 1\times 3\times 5 }{ 5\times 10\times 15 } +...

We find that for the denominator,

5 = 5 × 1 = 5 1 × 1 ! 5 × 10 = 5 × 5 × 1 × 2 = 5 2 × 2 ! 5 × 10 × 15 = 5 × 5 × 5 × 1 × 2 × 3 = 5 3 × 3 ! 5=5\times 1={ 5 }^{ 1 }\times 1!\\ 5\times 10=5\times 5\times 1\times 2={ 5 }^{ 2 }\times 2!\\ 5\times 10\times 15=5\times 5\times 5\times 1\times 2\times 3={ 5 }^{ 3 }\times 3!

And for the numerator,

1 = 1 ! ÷ ( 2 0 × 0 ! ) 1 × 3 = 1 × 2 × 3 ÷ ( 2 ) = 3 ! ÷ ( 2 × 1 ) = 3 ! ÷ ( 2 1 × 1 ! ) 1 × 3 × 5 = 1 × 2 × 3 × 4 × 5 ÷ ( 2 × 4 ) = 5 ! ÷ ( 2 × 2 × 1 × 2 ) = 5 ! ÷ ( 2 2 × 2 ! ) 1=1!\div { (2 }^{ 0 }\times 0!)\\ 1\times 3=1\times 2\times 3\div (2)=3!\div (2\times 1)=3!\div { (2 }^{ 1 }\times 1!)\\ 1\times 3\times 5=1\times 2\times 3\times 4\times 5\div (2\times 4)=5!\div (2\times 2\times 1\times 2)=5!\div { (2 }^{ 2 }\times 2!)

We let n n be the number of terms on the numerator (and the denominator).

Therefore we find that

n = 1 , 1 5 = 1 ! ÷ ( 2 0 × 0 ! ) 5 1 × 1 ! = 1 ! ( 2 0 × 0 ! ) ( 5 1 × 1 ! ) n = 2 , 1 × 3 5 × 10 = 3 ! ÷ ( 2 1 × 1 ! ) 5 2 × 2 ! = 3 ! ( 2 1 × 1 ! ) ( 5 2 × 2 ! ) n = 3 , 1 × 3 × 5 5 × 10 × 15 = 5 ! ÷ ( 2 2 × 2 ! ) 5 3 × 3 ! = 5 ! ( 2 2 × 2 ! ) ( 5 3 × 3 ! ) n=1,\qquad \frac { 1 }{ 5 } =\frac { 1!\div ({ 2 }^{ 0 }\times 0!) }{ { 5 }^{ 1 }\times 1! } =\frac { 1! }{ ({ 2 }^{ 0 }\times 0!)({ 5 }^{ 1 }\times 1!) } \\ n=2,\qquad \frac { 1\times 3 }{ 5\times 10 } =\frac { 3!\div ({ 2 }^{ 1 }\times 1!) }{ { 5 }^{ 2 }\times 2! } =\frac { 3! }{ ({ 2 }^{ 1 }\times 1!)({ 5 }^{ 2 }\times 2!) } \\ n=3,\qquad \frac { 1\times 3\times 5 }{ 5\times 10\times 15 } =\frac { 5!\div ({ 2 }^{ 2 }\times 2!) }{ { 5 }^{ 3 }\times 3! } =\frac { 5! }{ ({ 2 }^{ 2 }\times 2!)({ 5 }^{ 3 }\times 3!) }

We can now generalise this into

( 2 n 1 ) ! [ 2 n 1 × ( n 1 ) ! ] ( 5 n × n ! ) \frac { (2n-1)! }{ [{ 2 }^{ n-1 }\times (n-1)!]({ 5 }^{ n }\times n!) }

Hence,

1 + 1 5 + 1 × 3 5 × 10 + 1 × 3 × 5 5 × 10 × 15 + . . . = 1 + n = 1 ( 2 n 1 ) ! [ 2 n 1 × ( n 1 ) ! ] ( 5 n × n ! ) = 5 3 { 1 + n = 1 ( 2 n 1 ) ! [ 2 n 1 × ( n 1 ) ! ] ( 5 n × n ! ) } 2 = 5 3 1+\frac { 1 }{ 5 } +\frac { 1\times 3 }{ 5\times 10 } +\frac { 1\times 3\times 5 }{ 5\times 10\times 15 } +...\\ =1+\sum _{ n=1 }^{ \infty }{ \frac { (2n-1)! }{ [{ 2 }^{ n-1 }\times (n-1)!]({ 5 }^{ n }\times n!) } } \\ =\sqrt { \frac { 5 }{ 3 } } \\ \Rightarrow { \left\{ 1+\sum _{ n=1 }^{ \infty }{ \frac { (2n-1)! }{ [{ 2 }^{ n-1 }\times (n-1)!]({ 5 }^{ n }\times n!) } } \right\} }^{ 2 }=\frac { 5 }{ 3 }

And because

a b 5 3 \frac { a }{ b } \equiv \frac { 5 }{ 3 }

So

a + b = 8 \therefore a+b=\boxed { 8 }

Moderator note:

How did you get 5 3 \sqrt{\frac53} ?

Why do you get 5 3 \sqrt{\frac{5}{3}} from 1+ n = 1 ( 2 n 1 ) ! [ 2 n 1 × ( n 1 ) ! ] ( 5 n × n ! ) \sum _{ n=1 }^{ \infty }{ \frac { (2n-1)! }{ \left[ { 2 }^{ n-1 }\times (n-1)! \right] ({ 5 }^{ n }\times n!) } }

Julian Rovee - 6 years ago

Log in to reply

I do not understand your question.

Quince Pan - 5 years, 12 months ago

Log in to reply

Why does 5 3 = 1 + n = 1 ( 2 n 1 ) ! [ 2 n 1 × ( n 1 ) ! ] ( 5 n × n ! ) \sqrt{\frac{5}{3}}=1+\sum _{ n=1 }^{ \infty }{ \frac { (2n-1)! }{ \left[ { 2 }^{ n-1 }\times (n-1)! \right] ({ 5 }^{ n }\times n!) } }

Julian Rovee - 5 years, 12 months ago

I tried adding partial sums and even squaring them but I couldn't figure out a precise number, so I went to use the calculator to calculate the sum instead.

Any alternative methods? I'm new to summation and manually calculating them.

Quince Pan - 5 years, 11 months ago

Do you know Newton's Generalized Binomial Theorem?

Kartik Sharma - 5 years, 9 months ago

Log in to reply

The whole fact of 5 3 \sqrt{\frac{5}{3}} lies there.

Kartik Sharma - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...