Special summation 1

Algebra Level 3

1 1 2 2 2 + 1 2 2 3 2 + 1 3 2 4 2 + = A π B + C \dfrac{1}{1^22^2}+\dfrac{1}{2^23^2}+\dfrac{1}{3^24^2}+\cdots=A\pi^B+C

The equation above holds true for rational numbers A A , B B , and C C . Find A + B + C A+B+C .

Reference question:

Special summation 2

Special summation 3


The answer is -0.667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The sum = n = 1 1 n 2 ( n + 1 ) 2 = n = 1 [ 1 n ( n + 1 ) ] 2 = n = 1 ( 1 n 1 n + 1 ) 2 = n = 1 [ 1 n 2 2 n ( n + 1 ) + 1 ( n + 1 ) 2 ] = 2 n = 1 1 n 2 1 2 n = 1 ( 1 n 1 n + 1 ) = 2 × π 2 6 1 2 = π 2 3 3 A + B + C = 1 3 + 2 3 0.667 \quad \text{The sum}\\=\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^2(n+1)^2} \\ = \displaystyle\sum_{n=1}^\infty \left[\dfrac{1}{n(n+1)}\right]^2 \\ = \displaystyle\sum_{n=1}^\infty \left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)^2 \\= \displaystyle\sum_{n=1}^\infty \left[\dfrac{1}{n^2}-\dfrac{2}{n(n+1)}+\dfrac{1}{(n+1)^2}\right] \\ = 2\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^2}-1-2\displaystyle\sum_{n=1}^\infty\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right) \\ =2\times \dfrac{\pi^2}{6}-1-2 \\=\dfrac{\pi^2}{3}-3 \\ \therefore A+B+C=\dfrac{1}{3}+2-3\approx\boxed{-0.667}

S = n = 1 1 n 2 ( n + 1 ) 2 By partial fraction decomposition = n = 1 ( 2 n + 3 ( n + 1 ) 2 2 n 1 n 2 ) = n = 1 ( 2 n + 1 + 1 ( n + 1 ) 2 2 n + 1 n 2 ) = 2 n = 1 ( 1 n + 1 1 n ) + 2 n = 1 1 n 2 1 1 2 Riemann zeta function ζ ( s ) = k = 1 1 k s = 2 ζ ( 2 ) 3 = π 2 3 3 and ζ ( 2 ) = π 2 6 \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{n^2(n+1)^2} & \small \blue{\text{By partial fraction decomposition}} \\ & = \sum_{n=1}^\infty \left(\frac {2n+3}{(n+1)^2} - \frac {2n-1}{n^2}\right) \\ & = \sum_{n=1}^\infty \left(\frac 2{n+1} + \frac 1{(n+1)^2} - \frac 2n + \frac 1{n^2}\right) \\ & = 2 \sum_{n=1}^\infty \left(\frac 1{n+1} - \frac 1n \right) + 2 \blue{\sum_{n=1}^\infty \frac 1{n^2}} - \frac 1{1^2} & \small \blue{\text{Riemann zeta function }\zeta (s) = \sum_{k=1}^\infty \frac 1{k^s}} \\ & = 2 \blue{\zeta (2)} - 3 = \frac {\pi^2}3 - 3 & \small \blue{\text{and }\zeta (2) = \frac {\pi^2}6} \end{aligned}

Therefore, A + B + C = 1 3 + 2 3 = 2 3 0.667 A+B+C = \dfrac 13 + 2 - 3 = - \dfrac 23 \approx \boxed{-0.667} .


Reference:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...