Special summation 3 (edited)

Algebra Level 4

1 1 4 2 4 + 1 2 4 3 4 + 1 3 4 4 4 + = A π B + C π D + E \dfrac{1}{1^42^4}+\dfrac{1}{2^43^4}+\dfrac{1}{3^44^4}+\cdots=A\pi^B+C\pi^D+E

The equation above holds true for rational number A A , B B , C C , D D , and E E , where B > D B>D . Find E C × A + B D \dfrac{E}{C}\times A+\dfrac{B}{D} .

Try also:


The answer is 1.767.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

S = n = 1 1 n 4 ( n + 1 ) 4 By partial fraction decomposition = n = 1 ( 20 n 3 + 70 n 2 + 84 n + 35 ( n + 1 ) 4 20 n 3 10 n 2 + 4 n 1 n 4 ) = n = 1 ( 20 n + 1 + 10 ( n + 1 ) 2 + 4 ( n + 1 ) 3 + 1 ( n + 1 ) 4 20 n + 10 n 2 4 n 3 + 1 n 4 ) = n = 1 ( 20 n + 1 20 n + 4 ( n + 1 ) 3 4 n 3 ) + 2 n = 1 ( 10 n 2 + 1 n 4 ) 10 1 2 1 1 4 Riemann zeta function ζ ( s ) = k = 1 1 k s = 20 4 + 20 ζ ( 2 ) + 2 ζ ( 4 ) 10 1 and ζ ( 2 ) = π 2 6 , ζ ( 4 ) = π 4 90 = π 4 45 + 10 3 π 2 35 \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{n^4(n+1)^4} & \small \blue{\text{By partial fraction decomposition}} \\ & = \sum_{n=1}^\infty \left(\frac {20n^3+70n^2+84n+35}{(n+1)^4} - \frac {20n^3-10n^2+4n-1}{n^4}\right) \\ & = \sum_{n=1}^\infty \left(\frac {20}{n+1} + \frac {10}{(n+1)^2} + \frac 4{(n+1)^3} + \frac 1{(n+1)^4} - \frac {20}n + \frac {10}{n^2} - \frac 4{n^3} + \frac 1{n^4} \right) \\ & = \sum_{n=1}^\infty \left(\frac {20}{n+1} - \frac {20}n + \frac 4{(n+1)^3} - \frac 4{n^3}\right) + 2 \blue{\sum_{n=1}^\infty \left(\frac {10}{n^2} + \frac 1{n^4}\right)} - \frac {10}{1^2} - \frac 1{1^4} & \small \blue{\text{Riemann zeta function }\zeta(s) = \sum_{k=1}^\infty \frac 1{k^s}} \\ & = - 20 - 4 + 20 \blue{\zeta (2)} + 2 \blue{\zeta (4)} - 10 - 1 & \small \blue{\text{and }\zeta(2) = \frac {\pi^2}6, \zeta(4) = \frac {\pi^4}{90}} \\ & = \frac {\pi^4}{45} + \frac {10}3\pi^2 - 35 \end{aligned}

Therefore, E A C + B D = 35 × 3 10 × 45 + 4 2 = 53 30 1.767 \dfrac {EA}C + \dfrac BD = \dfrac {-35\times 3}{10\times 45} + \dfrac 42 = \dfrac {53}{30} \approx \boxed{1.767} .


Reference:

The sum = n = 1 1 n 4 ( n + 1 ) 4 = n = 1 [ 1 n ( n + 1 ) ] 4 = n = 1 ( 1 n 1 n + 1 ) 4 = n = 1 [ 1 n 4 4 n 3 ( n + 1 ) + 6 n 2 ( n + 1 ) 2 4 n ( n + 1 ) 3 + 1 ( n + 1 ) 4 ] = n = 1 [ 1 n 4 + 1 ( n + 1 ) 4 ] 4 n = 1 [ 1 n 3 ( n + 1 ) + 1 n ( n + 1 ) 3 ] + 6 n = 1 1 n 2 ( n + 1 ) 2 = 2 ζ ( 4 ) 1 4 n = 1 n 2 + ( n + 1 ) 2 n 3 ( n + 1 ) 3 + 6 ( π 2 3 3 ) = 2 × π 4 90 1 4 n = 1 2 n ( n + 1 ) + 1 n 3 ( n + 1 ) 3 + 2 π 2 18 = π 4 45 + 2 π 2 19 8 n = 1 1 n 2 ( n + 1 ) 2 4 n = 1 1 n 3 ( n + 1 ) 3 = π 4 45 + 2 π 2 19 8 ( π 2 3 3 ) 4 ( 10 π 2 ) = π 4 45 + 2 π 2 19 8 π 2 3 + 24 40 + 4 π 2 = π 4 45 + 10 3 π 2 35 E C × A + B D = 35 × 3 10 × 1 45 + 4 2 = 53 30 1.767 \quad\text{The sum} \\ = \displaystyle\sum_{n=1}^\infty \dfrac{1}{n^4(n+1)^4} \\ = \displaystyle\sum_{n=1}^\infty \left[\dfrac{1}{n(n+1)}\right]^4 \\ = \displaystyle\sum_{n=1}^\infty \left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)^4 \\= \displaystyle\sum_{n=1}^\infty \left[\dfrac{1}{n^4}-\dfrac{4}{n^3(n+1)}+\dfrac{6}{n^2(n+1)^2}-\dfrac{4}{n(n+1)^3}+\dfrac{1}{(n+1)^4}\right] \\= \displaystyle\sum_{n=1}^\infty \left[\dfrac{1}{n^4}+\dfrac{1}{(n+1)^4}\right]- 4\displaystyle\sum_{n=1}^\infty \left[\dfrac{1}{n^3(n+1)}+\dfrac{1}{n(n+1)^3}\right] +6\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^2(n+1)^2} \\= 2\zeta(4)-1-4\displaystyle\sum_{n=1}^\infty \dfrac{n^2+(n+1)^2}{n^3(n+1)^3}+6\left(\dfrac{\pi^2}{3}-3\right) \\= 2\times\dfrac{\pi^4}{90}-1-4\displaystyle\sum_{n=1}^\infty \dfrac{2n(n+1)+1}{n^3(n+1)^3}+2\pi^2-18 \\= \dfrac{\pi^4}{45}+2\pi^2-19-8\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^2(n+1)^2}-4\displaystyle\sum_{n=1}^\infty \dfrac{1}{n^3(n+1)^3} \\= \dfrac{\pi^4}{45}+2\pi^2-19-8\left(\dfrac{\pi^2}{3}-3\right)-4\left(10-\pi^2\right) \\= \dfrac{\pi^4}{45}+2\pi^2-19-\dfrac{8\pi^2}{3}+24-40+4\pi^2 \\= \dfrac{\pi^4}{45}+\dfrac{10}{3}\pi^2-35 \\ \therefore \dfrac{E}{C}\times A+\dfrac{B}{D} = -35\times\dfrac{3}{10}\times\dfrac{1}{45}+\dfrac{4}{2}=\dfrac{53}{30}\approx\boxed{1.767}

I use the result of the question below:

Special summation 1

Special summation 2

Alapan Das
Nov 3, 2019

I will do it with a little use of Einstein's notation to avoid summation signs. Say, \(\sum_{k=1}^\infty \frac{1}{(k(k+1))^4}

= \frac{1}{(k(k+1))^4}\)

So,

1 ( k ( k + 1 ) ) 4 \frac{1}{(k(k+1))^4}

= ( 1 k 1 k + 1 ) 4 =(\frac{1}{k}-\frac{1}{k+1})^4

= 1 k 4 + 1 ( k + 1 ) 4 4 ( 1 k 3 ( k + 1 ) + 1 k ( k + 1 ) 3 ) + 6 ( 1 ( k ( k + 1 ) ) 2 ) =\frac{1}{k^4}+\frac{1}{(k+1)^4}-4(\frac{1}{k^3(k+1)}+\frac{1}{k(k+1)^3})+6(\frac{1}{(k(k+1))^2})

= 1 k 4 + 1 ( k + 1 ) 4 4 ( 1 k 3 1 k 2 ( k + 1 ) + 1 k ( k + 1 ) 2 1 ( k + 1 ) 3 ) + 6 ( 1 k 2 + 1 ( k + 1 ) 2 2 1 k ( k + 1 ) ) =\frac{1}{k^4}+\frac{1}{(k+1)^4}-4(\frac{1}{k^3}-\frac{1}{k^2(k+1)}+\frac{1}{k(k+1)^2}-\frac{1}{(k+1)^3})+6(\frac{1}{k^2}+\frac{1}{(k+1)^2}-2\frac{1}{k(k+1)})

= 2 ζ ( 4 ) + 12 ζ ( 2 ) 19 4 ( 4 2 ζ ( 2 ) ) =2\zeta(4)+12\zeta(2)-19-4(4-2\zeta(2))

= 2 ζ ( 4 ) + 20 ζ ( 2 ) 35 = π 4 45 + 10 π 2 3 35 =2\zeta(4)+20\zeta(2)-35=\frac{π^4}{45}+\frac{10π^2}{3}-35 ).

[By the way ζ ( 2 ) = π ² 6 , ζ ( 4 ) = π 90 \zeta(2)=\frac{π²}{6} , \zeta(4)=\frac{π⁴}{90} ].

Hence, we have A = 1 45 , B = 4 , C = 10 3 , D = 2 , E = 35 A=\frac{1}{45},B=4,C=\frac{10}{3}, D=2, E=-35 .

So, the given form has the value 2 7 30 = 1.7666666 1.767 2-\frac{7}{30}=1.7666666≈1.767 .

Waiving that summation notation is called Einstein notation.

Alapan Das - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...