1 4 2 4 1 + 2 4 3 4 1 + 3 4 4 4 1 + ⋯ = A π B + C π D + E
The equation above holds true for rational number A , B , C , D , and E , where B > D . Find C E × A + D B .
Try also:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The sum = n = 1 ∑ ∞ n 4 ( n + 1 ) 4 1 = n = 1 ∑ ∞ [ n ( n + 1 ) 1 ] 4 = n = 1 ∑ ∞ ( n 1 − n + 1 1 ) 4 = n = 1 ∑ ∞ [ n 4 1 − n 3 ( n + 1 ) 4 + n 2 ( n + 1 ) 2 6 − n ( n + 1 ) 3 4 + ( n + 1 ) 4 1 ] = n = 1 ∑ ∞ [ n 4 1 + ( n + 1 ) 4 1 ] − 4 n = 1 ∑ ∞ [ n 3 ( n + 1 ) 1 + n ( n + 1 ) 3 1 ] + 6 n = 1 ∑ ∞ n 2 ( n + 1 ) 2 1 = 2 ζ ( 4 ) − 1 − 4 n = 1 ∑ ∞ n 3 ( n + 1 ) 3 n 2 + ( n + 1 ) 2 + 6 ( 3 π 2 − 3 ) = 2 × 9 0 π 4 − 1 − 4 n = 1 ∑ ∞ n 3 ( n + 1 ) 3 2 n ( n + 1 ) + 1 + 2 π 2 − 1 8 = 4 5 π 4 + 2 π 2 − 1 9 − 8 n = 1 ∑ ∞ n 2 ( n + 1 ) 2 1 − 4 n = 1 ∑ ∞ n 3 ( n + 1 ) 3 1 = 4 5 π 4 + 2 π 2 − 1 9 − 8 ( 3 π 2 − 3 ) − 4 ( 1 0 − π 2 ) = 4 5 π 4 + 2 π 2 − 1 9 − 3 8 π 2 + 2 4 − 4 0 + 4 π 2 = 4 5 π 4 + 3 1 0 π 2 − 3 5 ∴ C E × A + D B = − 3 5 × 1 0 3 × 4 5 1 + 2 4 = 3 0 5 3 ≈ 1 . 7 6 7
I use the result of the question below:
I will do it with a little use of Einstein's notation to avoid summation signs. Say, \(\sum_{k=1}^\infty \frac{1}{(k(k+1))^4}
= \frac{1}{(k(k+1))^4}\)
So,
( k ( k + 1 ) ) 4 1
= ( k 1 − k + 1 1 ) 4
= k 4 1 + ( k + 1 ) 4 1 − 4 ( k 3 ( k + 1 ) 1 + k ( k + 1 ) 3 1 ) + 6 ( ( k ( k + 1 ) ) 2 1 )
= k 4 1 + ( k + 1 ) 4 1 − 4 ( k 3 1 − k 2 ( k + 1 ) 1 + k ( k + 1 ) 2 1 − ( k + 1 ) 3 1 ) + 6 ( k 2 1 + ( k + 1 ) 2 1 − 2 k ( k + 1 ) 1 )
= 2 ζ ( 4 ) + 1 2 ζ ( 2 ) − 1 9 − 4 ( 4 − 2 ζ ( 2 ) )
= 2 ζ ( 4 ) + 2 0 ζ ( 2 ) − 3 5 = 4 5 π 4 + 3 1 0 π 2 − 3 5 ).
[By the way ζ ( 2 ) = 6 π ² , ζ ( 4 ) = 9 0 π ⁴ ].
Hence, we have A = 4 5 1 , B = 4 , C = 3 1 0 , D = 2 , E = − 3 5 .
So, the given form has the value 2 − 3 0 7 = 1 . 7 6 6 6 6 6 6 ≈ 1 . 7 6 7 .
Waiving that summation notation is called Einstein notation.
Problem Loading...
Note Loading...
Set Loading...
S = n = 1 ∑ ∞ n 4 ( n + 1 ) 4 1 = n = 1 ∑ ∞ ( ( n + 1 ) 4 2 0 n 3 + 7 0 n 2 + 8 4 n + 3 5 − n 4 2 0 n 3 − 1 0 n 2 + 4 n − 1 ) = n = 1 ∑ ∞ ( n + 1 2 0 + ( n + 1 ) 2 1 0 + ( n + 1 ) 3 4 + ( n + 1 ) 4 1 − n 2 0 + n 2 1 0 − n 3 4 + n 4 1 ) = n = 1 ∑ ∞ ( n + 1 2 0 − n 2 0 + ( n + 1 ) 3 4 − n 3 4 ) + 2 n = 1 ∑ ∞ ( n 2 1 0 + n 4 1 ) − 1 2 1 0 − 1 4 1 = − 2 0 − 4 + 2 0 ζ ( 2 ) + 2 ζ ( 4 ) − 1 0 − 1 = 4 5 π 4 + 3 1 0 π 2 − 3 5 By partial fraction decomposition Riemann zeta function ζ ( s ) = k = 1 ∑ ∞ k s 1 and ζ ( 2 ) = 6 π 2 , ζ ( 4 ) = 9 0 π 4
Therefore, C E A + D B = 1 0 × 4 5 − 3 5 × 3 + 2 4 = 3 0 5 3 ≈ 1 . 7 6 7 .
Reference: