Special triangles

Geometry Level 4

How many integer-sided right-angled triangles are there which have the same perimeter and area?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let positive integers a , b a,b be the legs of the right triangle and c = a 2 + b 2 c = \sqrt{a^{2} + b^{2}} be the hypotenuse. Then we require that

a + b + c = a b 2 a b 2 ( a + b ) = 2 c ( a b ) 2 4 a b ( a + b ) + 4 ( a + b ) 2 = 4 c 2 a + b + c = \dfrac{ab}{2} \Longrightarrow ab - 2(a + b) = 2c \Longrightarrow (ab)^{2} - 4ab(a + b) + 4(a + b)^{2} = 4c^{2} \Longrightarrow

a b ( a b 4 a 4 b ) + 4 ( a 2 + 2 a b + b 2 ) = 4 c 2 = 4 ( a 2 + b 2 ) a b ( a b 4 a 4 b + 8 ) = 0 ab(ab - 4a - 4b) + 4(a^{2} + 2ab + b^{2}) = 4c^{2} = 4(a^{2} + b^{2}) \Longrightarrow ab(ab - 4a - 4b + 8) = 0 \Longrightarrow

a b 4 a 4 b + 8 = 0 ( a 4 ) ( b 4 ) = 8 ab - 4a - 4b + 8 = 0 \Longrightarrow (a - 4)(b - 4) = 8 .

Now 8 8 can be factored, without concern about ordering, as ( 8 ) ( 1 ) , ( 4 ) ( 2 ) , 4 2 (-8)*(-1), (-4)*(-2), 4*2 and 8 1 8*1 . Assigning the negative factors to a 4 a - 4 and b 4 b - 4 yields at least one negative value for a , b a,b , so the only valid assignments involve the 4 2 4*2 and 8 1 8*1 factorings. Because of the symmetry between a , b a,b in the product ( a 4 ) ( b 4 ) (a - 4)(b - 4) we can, without loss of generality, take a b a \le b , in which case we can either have

a 4 = 2 , b 4 = 4 ( a , b , c ) = ( 6 , 8 , 10 ) a - 4 = 2, b - 4 = 4 \Longrightarrow (a,b,c) = (6,8,10) or

a 4 = 1 , b 4 = 8 ( a , b , c ) = ( 5 , 12 , 13 ) a - 4 = 1, b - 4 = 8 \Longrightarrow (a,b,c) = (5,12,13) .

So there a total of 2 \boxed{2} suitable integer-sided right triangles.

I think this more of an algebra problem rather than geometry.Lol

Ayush G Rai - 4 years, 4 months ago

W e k n o w t h a t p y t h a g o r e a n t r i p l e s a r e g e n e r a t e d b y i n t e g e r s m > n , w h e r e t h e t r i p l e s a r e ( m 2 n 2 , 2 m n , m 2 + n 2 ) . w e a r e c o n d i t i o n e d b y a r e a = p e r i m e t e r . 1 2 ( m 2 n 2 ) 2 m n = m 2 n 2 + 2 m n + m 2 + n 2 = 2 m ( m + n ) . H o w e v e r m 0 , a n d m + n 0. S o d i v i d i n g b o t h s i d e s w i t h t h e i r p r o d u c t , ( m n ) n = 2 , i t i s a q u a d r a t i c i n n . n = m ± m 2 8 2 . S o m > 2. L e t m = 3 , w e g e t n = 1 0 r n = 2. A s w e s e e b e l o w m c a n n o t t a k e a n y o t h e r v a l u e . O n l y T W O s o l u t i o n s w i t h ( m , n ) = ( 1 , 3 ) a n d ( 2 , 3 ) a r e ( 6 , 8 , 10 ) a n d ( 5 , 12 , 13 ) . B u t f o r n t o b e a n i n t e g e r , m 2 8 = k 2 , k s o m e i n t e g e r . ( m k ) ( m + k ) = 2 4 , o r 1 8. S o m k = 2 , a n d m + k = 4. k = 3. W e h a v e s e e n t h i s . \or m k = 1 a n d m + k = 9. k = 5. F o r m = 5 , 25 8 i s n o t a n i n t e g e r . We~know~that~pythagorean~triples~are~generated~by~integers~m>n,\\ where~the ~triples~are~(m^2-n^2, 2mn, m^2+n^2).\\ \therefore~we~ are~conditioned~by~area=perimeter.\\ \implies~\frac 1 2*(m^2-n^2)*2mn=m^2-n^2+ 2mn+ m^2+n^2=2m(m+n).\\ However~m\neq 0,~and~m+n\neq 0. ~So~dividing~both~sides~with~their~product,\\ (m-n)n=2,~~\implies~it~is~a~quadratic~in ~n.\\ \therefore~\color{#E81990}{n=\dfrac{m\pm \sqrt{m^2-8}} 2.}\\ So~m>2.~~Let~m=3, ~we~get~n=1~0r~n=2.\\ As~we~see~below~m~can~not~take~any~other~value.\\ Only~TWO~solutions~with~(m,n)=(1,3)~and~ (2,3)~ ~are~~(6,8,10)~and~(5,12,13).\\ But~for~n~to~be~an~integer,~m^2-8=k^2,~k~some~integer.\\ \implies (m-k)(m+k)=2*4,~or~1*8.\\ So~m-k=2,~and~m+k=4.~\therefore~k=3.~~~We~ have~ seen~ this.\\ \or~~~m-k=1~and~m+k=9.~\therefore~k=5.\\ For~m=5,~~\sqrt{25-8}~is~ not~ an~ integer.\\

Christian Daang
Feb 3, 2017

Given: a + b + c = a b / 2 a + b + c = ab/2 a 2 + b 2 = c 2 ( a + b ) 2 = c 2 + 2 a b 2 a b = ( a + b + c ) ( a + b c ) a^2 + b^2 = c^2 \\ (a + b)^2 = c^2 + 2ab \\ 2ab = (a + b + c)(a + b - c)

4 a + 4 b + 4 c = 2 a b = ( a + b + c ) ( a + b c ) 4 ( a + b + c ) = ( a + b + c ) ( a + b c ) a + b c = 4 a + b = 4 + c 4a + 4b + 4c = 2ab = (a + b + c)(a + b - c) \\ 4(a + b + c) = (a + b + c)(a + b - c) \\ a + b - c = 4 \\ \implies a + b = 4 + c

a + b + c = a b / 2 a b = 8 + 4 c a + b + c = ab/2 \\ \implies ab = 8 + 4c

x 2 ( 4 + c ) x + 8 + 4 c = 0 ( x 4 + c 2 ) 2 = 16 + 8 c + c 2 32 16 c 4 = c 2 8 c 16 4 = ( c 4 ) 2 32 4 x = 4 + c ± ( c 4 ) 2 32 2 \implies x^2 - (4+c)x + 8+4c = 0 \\ \left( x - \cfrac{4+c}{2}\right )^2 = \cfrac{16 + 8c + c^2 - 32 - 16c}{4} = \cfrac{c^2 - 8c - 16}{4} = \cfrac{(c - 4)^2 - 32}{4} \\ x = \cfrac{4+c \pm \sqrt{(c - 4)^2 - 32}}{2}

if c is odd: then, c + 4 will turn out odd and hence, ( c 4 ) 2 32 (c - 4)^2 - 32 should be equal to 1 mod 4. so, ( c 4 ) 2 32 1 m o d 4 ( 4 n + 1 ) m o d 4 ( c 4 ) 2 = 4 n + 33 (c-4)^2 - 32 \equiv 1 \mod 4 \equiv (4n + 1) \mod 4 \\ (c - 4)^2 = 4n + 33

since 33 m o d 4 1 4 n m o d 4 = 0 n = 12 c = 13 33 \mod 4 \equiv 1 \implies 4n \mod 4 = 0 \implies n = 12 \implies c = 13 since if n = 4, c = 11 which is not a possible hypotenuse of a right triangle with integer sides.

if c is even: then, c + 4 will turn out even and hence, ( c 4 ) 2 32 (c - 4)^2 - 32 should be equal to 0 mod 4. so, ( c 4 ) 2 32 0 m o d 4 ( 4 n ) m o d 4 ( c 4 ) 2 = 4 n + 32 = 4 ( n + 8 ) 4 n m o d 4 0 n = 1 c = 10. (c-4)^2 - 32 \equiv 0 \mod 4 \equiv (4n) \mod 4 \\ (c - 4)^2 = 4n + 32 = 4(n + 8) \\ 4n \mod 4 \equiv 0 \implies n = 1 \implies c = 10 .

since there are 2 (only) possible values of c, therefore, there are (only) 2 right triangles \boxed{2 \text{right triangles}} with integer sides such that, their perimeter and area are equal.

I know, my solution have holes. Can you help me clear out that holes? i.e. How can you prove that ( c 4 ) 2 = 4 n + 33 a n d ( c 4 ) 2 = 4 n + 32 have only one feasible value of n such that, it will give a integer value c and it can be a possible hypotenuse of a right triangle.? \text{ I know, my solution have holes. Can you help me clear out that holes? i.e. How can you prove that } \\(c - 4)^2 = 4n + 33 \ and \ (c - 4)^2 = 4n + 32 \\ \text{ have only one feasible value of n such that, it will give a integer value c and it can be a possible hypotenuse of a right triangle.?}

@Christian Daang I don't really think that the hole can be patched up if you go modulo 4.

Rather I would suggest ,

F I R S T S O L U T I O N \underline{FIRST SOLUTION}

Since a , b a , b are integers , therefore the discriminant must be a perfect square and hence ( c 4 ) 2 32 = k 2 (c - 4)^2 - 32 = k^2

( c 4 k ) ( c 4 + k ) = 32 \Rightarrow (c - 4 - k)(c - 4 + k) = 32 . Now , write 32 32 as product of two numbers and check the cases which will lead you to only two solutions namely ( c , k ) = ( 13 , 7 ) ; ( 10 , 4 ) (c , k) = (13 , 7) ; (10 , 4) from which follows the conclusion.

S E C O N D S O L U T I O N \underline{SECOND SOLUTION}

a + b = 4 + c , a b = 8 + 4 c a + b = 4 + c , ab = 8 + 4c

From the former substitute c = a + b 4 c = a + b - 4 in the second equation and obtain a linear expression in a , b a , b as follows ( a 4 ) ( b 4 ) = 8 (a - 4)(b - 4) = 8

Again case check as before which will lead you to two unordered solutions namely ( a , b ) = ( 12 , 5 ) ; ( 6 , 8 ) (a , b) = (12 , 5) ; (6 , 8) from which follows the conclusion.

BTW your idea of making a quadratic with roots a , b a , b was very good.

Ankit Kumar Jain - 4 years, 3 months ago

Log in to reply

Whow, I like the first solution. Thanks sir for clarifying. :)

Christian Daang - 4 years, 3 months ago

Log in to reply

Welcome

Hey , I am not sir , I am of your age.. :) :) :)

Ankit Kumar Jain - 4 years, 3 months ago

Ankit kumar jain

Meera Somani - 4 years, 3 months ago

Log in to reply

@Meera Somani What do you mean?

Ankit Kumar Jain - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...