Spherplex

Geometry Level 4

A sphere of radius r r is reconstituted into n n smaller spheres, keeping the total volume constant.

Let a a be the ratio of the total surface area of the smaller spheres to the surface area of the original sphere.

Let b b be the ratio of the radius of the original sphere to the radius of the smaller sphere.

Let c c be the ratio of the volume of the original sphere to the volume of the smaller sphere.

What is the minimum integer value of a + b + c a + b + c ?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

César Maesima
Jun 11, 2015

I will assign R 1 , A 1 , V 1 R_1, A_1, V_1 for the radius, area and volume of the original sphere and R 2 , A 2 , V 2 R_2, A_2, V_2 for the radius, area and volume of the smaller spheres. That being said, we shall start with c, the ratio of the volume: V 1 = 4 / 3 π r 3 V 2 = V 1 / n V_{ 1 }=4/3\pi r^{ 3 }\\ V_2=V_1/n

Which give us the value of c. c = V 1 V 2 = V 1 V 1 / n = n c=\frac{V_1}{V_2}=\frac {V_1}{V_1/n}=n

With the value of the volume in hands, the radius should be calculated as follows: R 1 = r R 2 = V 2 4 π 3 3 = V 1 4 n π 3 3 = 4 π 3 r 3 4 n π 3 3 = r n 3 R_{ 1 }=r\\ R_{ 2 }=\sqrt [ 3 ]{ \frac { V_{ 2 } }{ \frac { 4\pi }{ 3 } } } =\sqrt [ 3 ]{ \frac { V_{ 1 } }{ \frac { 4n\pi }{ 3 } } } =\sqrt [ 3 ]{ \frac { \frac { 4\pi }{ 3 } r^{ 3 } }{ \frac { 4n\pi }{ 3 } } } =\frac { r }{ \sqrt [ 3 ]{ n } }

Therefore: b = R 1 R 2 = r r n 3 = n 3 b=\frac { R_{ 1 } }{ R_{ 2 } }= \frac { r }{ \frac { r }{ \sqrt [ 3 ]{ n } } } =\sqrt [ 3 ]{ n }

The areas are given by these formulas: A 1 = 4 π r 2 A 2 = 4 π r 2 2 = 4 π ( r n 3 ) 2 A_{ 1 }=4\pi r^{ 2 }\\ A_{ 2 }=4\pi r_{ 2 }^{ 2 }=4\pi { \left( \frac { r }{ \sqrt [ 3 ]{ n } } \right) }^{ 2 }

So a is calculated as follows: a = n A 2 A 1 = 4 n π ( r n 3 ) 2 4 π r 2 = n n 3 2 = n 3 a=\frac{nA_2 }{A_1}=\frac { 4n\pi { \left( \frac { r }{ \sqrt [ 3 ]{ n } } \right) }^{ 2 } }{ 4\pi r^{ 2 } } =\frac { n }{ { \sqrt [ 3 ]{ n } }^{ 2 } } =\quad \sqrt [ 3 ]{ n }

a + b + c = n 3 + n 3 + n = 2 n 3 + n a+b+c=\quad \sqrt [ 3 ]{ n } +\sqrt [ 3 ]{ n } +n=2\sqrt [ 3 ]{ n } +n

So n must be a perfect cube. 1 can't be an answer because the original sphere is divided into smaller spheres. The next perfect cube is 8, therefore: 2 n 3 + n = 2 8 3 + 8 = 2 × 2 + 8 = 4 + 8 = 12 2\sqrt [ 3 ]{ n } +n=2\sqrt [ 3 ]{ 8 } +8= 2\times 2+8=4+8=12

L e t x b e t h e r a d i u s o f t h e s m a l l e r s p h e r e s . . V o l u m e i s s a m e . n 4 3 π x 3 = 4 3 π r 3 . r x = n 3 . . . . ( 1 ) a = n 4 π x 2 4 π r 2 = n x 2 r 2 = n ( 3 n 2 ) = n 3 b = r x = n 3 . c = 4 3 π r 3 4 3 π x 3 = n If n=1, means we have no small spheres. Since we have n>1, the smallest n = 2 3 = 8 f o r a , b , t o b e i n t e g e r . a + b + c = 8 3 + 8 3 + 8 = 12 Let ~x~be~the~radius~of~the~smaller~spheres..\\Volume ~is~same.~~~\implies~n\dfrac 4 3 \pi*x^3=\dfrac 4 3 \pi*r^3. ~~\\\Large \therefore~~\dfrac r x =\sqrt[3]n....(1)\\a=\dfrac {n4\pi*x^2}{4\pi*r^2} =\dfrac {nx^2}{r^2}=\dfrac n {\sqrt[3](n^2)}=\sqrt[3]n\\b=\dfrac r x =\sqrt[3]n.\\c=\dfrac{\frac 4 3 \pi*r^3}{\frac 4 3 \pi*x^3}=n \\\text{If n=1, means we have no small spheres. Since we have n>1, }\\ \text{the smallest }n = 2^3=8~ for~ a,~b,~ to~ be~ integer.\\\therefore~a+b+c= \sqrt[3]8+\sqrt[3]8+8=~~~\Large \color{#D61F06}{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...