Sphylinder

Calculus Level 2

Consider a sphere of radius R R , what is the maximum volume of a cylinder that can fit inside the sphere?

Image credit: The University of Georgia

4 π R 3 3 \frac{4\pi R^3}3 8 π R 2 3 6 \frac {8 \pi R^2}{3\sqrt 6} 2 π R 3 2\pi R^3 4 π R 3 3 3 \frac{4\pi R^3}{3\sqrt 3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let R R be the radius of the sphere, h h be the height of the cylinder and r r be the radius of the cylinder. By the Pythagorean theorem, the radius of the cylinder is given by

r 2 = R 2 ( h 2 ) 2 = R 2 h 2 4 r^2=R^2-\left(\dfrac{h}{2}\right)^2=R^2-\dfrac{h^2}{4}

The volume of the cylinder is hence

V = π r 2 h = π ( R 2 h 2 4 ) h = π ( R 2 h h 3 4 ) V=\pi r^2 h = \pi \left(R^2-\dfrac{h^2}{4}\right)h=\pi \left(R^2h-\dfrac{h^3}{4}\right)

Differentiating with respect to h h and equating to 0 0 to find extrema gives

d V d h = π ( R 2 1 4 × 3 h 2 ) = π ( R 2 3 4 h 2 ) = 0 \dfrac{dV}{dh}=\pi \left(R^2-\dfrac{1}{4} \times 3h^2\right)=\pi \left(R^2-\dfrac{3}{4}h^2\right)=0

R 2 = 3 4 h 2 R^2=\dfrac{3}{4}h^2

h 2 = 4 3 R 2 h^2=\dfrac{4}{3}R^2

h = 4 3 R 2 = 2 R 3 h=\sqrt{\dfrac{4}{3}R^2}=\dfrac{2R}{\sqrt{3}}

Substituting, we get

V = π ( R 2 4 3 × 1 4 R 2 ) ( 2 R 3 ) = 4 3 × π R 3 3 V=\pi \left(R^2-\dfrac{4}{3} \times \dfrac{1}{4} R^2 \right)\left(\dfrac{2R}{\sqrt{3}}\right)=\boxed{\dfrac{4}{3} \times \dfrac{\pi R^3}{\sqrt{3}}}

Note: Do not forget the second derivative check.

Thank You for posting a solution to my problem !!! cheers

Rishabh Sood - 3 years, 2 months ago
Chew-Seong Cheong
Oct 31, 2017

Let the base radius and height of the cylinder fit in the sphere be r r and h h respectively. If the polar angle between the zenith and R R is θ \theta , then we have r = R sin θ r=R\sin \theta and h 2 = R cos θ \dfrac h2 = R\cos \theta . The volume V V of the cylinder is given by:

V = π r 2 h = 2 π R 3 sin 2 θ cos θ d V d θ = 2 π R 3 ( 2 sin θ cos 2 θ sin 3 θ ) Note that cos 2 θ = 1 sin 2 θ = 2 π R 3 ( 2 sin θ 3 sin 3 θ ) Equating d V d θ = 0 2 sin θ = 3 sin 3 θ Note that sin θ = 0 gives minimum V sin θ = 2 3 cos θ = 1 3 , tan θ = 2 d 2 V d θ 2 = 2 π R 3 ( 2 cos θ 9 sin 2 θ cos θ ) \begin{aligned} V & = \pi r2h = 2 \pi R^3 \sin^2 \theta \cos \theta \\ \implies \frac {dV}{d \theta} & = 2 \pi R^3 (2\sin \theta \cos^2 \theta - \sin^3 \theta) & \small \color{#3D99F6} \text{Note that } \cos^2 \theta = 1 - \sin^2 \theta \\ & = 2 \pi R^3 (2\sin \theta - 3\sin^3 \theta) & \small \color{#3D99F6} \text{Equating }\frac {dV}{d\theta} = 0 \\ 2\sin \theta & = 3\sin^3 \theta & \small \color{#3D99F6} \text{Note that }\sin \theta = 0 \text{ gives minimum }V \\ \implies \sin \theta & = \sqrt {\frac 23} & \small \color{#3D99F6} \implies \cos \theta = \frac 1{\sqrt 3}, \ \tan \theta = \sqrt 2 \\ \frac {d^2V}{d \theta^2} & = 2 \pi R^3 (2\cos \theta - 9\sin^2 \theta \cos \theta) \end{aligned}

d 2 V d θ 2 θ = tan 1 2 = 2 π R 3 ( 2 3 3 2 ) < 0 \begin{aligned} \implies \frac {d^2V}{d \theta^2}\bigg|_{\theta = \tan^{-1}\sqrt 2} & = 2 \pi R^3 \left(\frac 2{\sqrt 3} - 3\sqrt 2 \right) \color{#D61F06} < 0 \end{aligned}

This means that V V is maximum when θ = tan 1 2 \theta = \tan^{-1}\sqrt 2 and V max = 2 π R 3 × 2 3 × 1 3 = 4 π R 3 3 3 V_{\text{max}} = 2\pi R^3 \times \dfrac 23 \times \dfrac 1{\sqrt 3} = \boxed{\dfrac {4\pi R^3}{3\sqrt 3}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...