Spin in two different direction

Algebra Level 5

in quantum mechanics, the spin of an electron in different direction is written as a linear combination of the two orthonormal spin basis. it is known θ ϕ + = cos ( θ / 2 ) + sin ( θ / 2 ) e i ϕ \mid\theta \phi +\rangle = \cos(\theta/2) \mid \uparrow \rangle+\sin(\theta/2) e^{i\phi}\mid \downarrow\rangle with θ \theta been the inclination angle, and ϕ \phi been the azimuthal angle. , \mid \uparrow \rangle,\mid\downarrow\rangle are the orthonormal basis for spin.

the unit vector in the direction of θ 1 ϕ 1 \theta_1 \phi_1 in R 3 R^3 is n 1 n_1 and the unit vector in the direction of θ 2 ϕ 2 \theta_2 \phi_2 is n 2 n_2 . given the angle between the two vectors is π / 3 \pi/3 , what is θ 2 ϕ 2 + θ 1 ϕ 1 + 2 = ? \mid\langle\theta_2 \phi_2 +\mid\theta_1 \phi_1 +\rangle\mid^2=?


details and assumption:

a = a 1 + a 2 , b > = b 1 + b 2 a b = a 1 b 1 + a 2 b 2 |a\rangle = a_1 \mid \uparrow \rangle +a_2 \mid \downarrow \rangle,|b> = b_1 \mid \uparrow \rangle +b_2 \mid \downarrow \rangle\implies \langle a\mid b\rangle= \overline{a_1}b_1+\overline{a_2}b_2 where z \overline{z} is the conjugate complex of z.

while this might seem like a physics problem, its just algebraically manipulating the innerproduct.

hint: maybe spherical coordinates aren't the best coordinates to work in for this problem.

credits: mit ocw


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Jan 3, 2018

i tried this using spherical coordinates, it turned out to be too tedious. i decided to use cartesian coordinate because of a nice relation i saw: 2 cos ( θ / 2 ) θ ϕ + = 2 cos 2 ( θ / 2 ) + 2 cos ( θ / 2 ) sin ( θ / 2 ) e i ϕ = ( 1 + c o s ( θ ) ) + sin ( θ ) ( cos ( ϕ ) + i sin ( ϕ ) ) = ( 1 + z ) + ( x + i y ) 2\cos(\theta/2) \mid\theta \phi +\rangle =2 \cos^2(\theta/2) \mid \uparrow \rangle+2\cos(\theta/2)\sin(\theta/2) e^{i\phi}\mid \downarrow\rangle\\=(1+cos(\theta))\mid \uparrow \rangle+\sin(\theta)(\cos(\phi)+i\sin(\phi))\mid \downarrow\rangle= (1+z)\mid \uparrow \rangle+(x+iy)\mid \downarrow\rangle so the inner product is: 4 cos ( θ 1 / 2 ) cos ( θ 2 / 2 ) θ 2 ϕ 2 + θ 1 ϕ 1 + = ( 1 + z 1 ) ( 1 + z 2 ) + ( x 1 + i y 1 ) ( x 2 i y 2 ) 4\cos(\theta_1/2)\cos(\theta_2/2) \langle\theta_2 \phi_2 +\mid\theta_1 \phi_1 +\rangle=(1+z_1)(1+z_2)+(x_1+iy_1)(x_2-iy_2) squaring the norm of both sides and using half angle identities 4 ( 1 + z 1 ) ( 1 + z 2 ) θ 2 ϕ 2 + θ 1 ϕ 1 + 2 = [ ( 1 + z 1 ) ( 1 + z 2 ) + ( x 1 + i y 1 ) ( x 2 i y 2 ) ] [ ( 1 + z 1 ) ( 1 + z 2 ) + ( x 1 i y 1 ) ( x 2 + i y 2 ) ] 4(1+z_1)(1+z_2)\mid\langle\theta_2 \phi_2 +\mid\theta_1 \phi_1 +\rangle\mid^2 = [(1+z_1)(1+z_2)+(x_1+iy_1)(x_2-iy_2)][(1+z_1)(1+z_2)+(x_1-iy_1)(x_2+iy_2)] the RHS uses the fact z 2 = z z |z|^2 = z \overline{z} . instead of fully expanding we can use ( a + b ) ( a + b ) = a 2 + a ( b + b ) + b 2 = a 2 + 2 a R e ( b ) + b 2 (a+b)(a+\overline{b})= a^2 +a(b+\overline{b})+|b|^2 = a^2+2a Re(b) +|b|^2 with a.b been obvious substitutes. we have 4 ( 1 + z 1 ) ( 1 + z 2 ) θ 2 ϕ 2 + θ 1 ϕ 1 + 2 = ( 1 + z 1 ) 2 ( 1 + z 2 ) 2 + 2 ( 1 + z 1 ) ( 1 + z 2 ) R e ( ( x 1 + i y 1 ) ( x 2 i y 2 ) ) + ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) = ( 1 + z 1 ) 2 ( 1 + z 2 ) 2 + 2 ( 1 + z 1 ) ( 1 + z 2 ) ( x 1 x 2 + y 1 y 2 ) + ( 1 z 1 2 ) ( 1 z 2 2 ) = ( 1 + z 1 ) ( 1 + z 2 ) [ ( 1 + z 1 ) ( 1 + z 2 ) + 2 ( x 1 x 2 + y 1 y 2 ) + ( 1 z 1 ) ( 1 z 2 ) ] 4(1+z_1)(1+z_2)\mid\langle\theta_2 \phi_2 +\mid\theta_1 \phi_1 +\rangle\mid^2\\= (1+z_1)^2(1+z_2)^2+2(1+z_1)(1+z_2) Re((x_1+iy_1)(x_2-iy_2)) + (x_1^2+y_1^2)(x_2^2+y_2^2) \\ =(1+z_1)^2(1+z_2)^2+2(1+z_1)(1+z_2)(x_1x_2+y_1 y_2) + (1-z_1^2)(1-z_2^2)\\= (1+z_1)(1+z_2)[(1+z_1)(1+z_2)+2(x_1x_2+y_1 y_2) +(1-z_1)(1-z_2)] where the normality of the vector was used to find x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 . cancelling the common factor we have 4 θ 2 ϕ 2 + θ 1 ϕ 1 + 2 = ( 1 + z 1 ) ( 1 + z 2 ) + 2 ( x 1 x 2 + y 1 y 2 ) + ( 1 z 1 ) ( 1 z 2 ) = 1 + z 1 + z 2 + z 1 z 2 + 2 x 1 x 2 + 2 y 1 y 2 + 1 z 1 z 2 + z 1 + z 2 = 2 ( 1 + x 1 x 2 + y 1 y 2 + z 1 z 2 ) < θ 2 ϕ 2 + θ 1 ϕ 1 + > 2 = 1 + x 1 x 2 + y 1 y 2 + z 1 z 2 2 = 1 + n 1 . n 2 2 4\mid\langle\theta_2 \phi_2 +\mid\theta_1 \phi_1 +\rangle\mid^2= (1+z_1)(1+z_2)+2(x_1x_2+y_1 y_2) +(1-z_1)(1-z_2)\\= 1+z_1+z_2+z_1z_2+2x_1x_2+2y_1y_2 +1-z_1-z_2+z_1+z_2= 2(1+x_1x_2+y_1y_2+z_1z_2) \\ |<\theta_2 \phi_2+|\theta_1 \phi_1 +>|^2= \dfrac{1+x_1x_2+y_1y_2+z_1z_2}{2} = \dfrac{1+n_1 .n_2}{2} the cosine of the angle between the two unit vectors( π / 3 \pi/3 ) is the dot product of the two unit vectors.. hence this turns into θ 2 ϕ 2 + θ 1 ϕ 1 + 2 = 1 + cos ( π / 3 ) 2 = cos 2 ( π / 6 ) = 3 4 \mid\langle\theta_2 \phi_2 +\mid\theta_1 \phi_1 +\rangle\mid^2 = \dfrac{1+\cos(\pi/3)}{2} = \cos^2(\pi/6)= \boxed{\dfrac{3}{4}}

it seems quite difficult,do u know if there is any book which is easy for learning qm?

Frost Constantin - 3 years, 5 months ago

Log in to reply

not a book, but mit ocw lecture notes are a good resource. (course 8.04-8.06). i use the book "principles of quantum mechanics" by dirac, which is a famous book, but is better as a learning supplement.

Aareyan Manzoor - 3 years, 5 months ago

Log in to reply

i have a problem about the Fermat and Maupertuis principles,i will really appreciate it if u can help me with that

Frost Constantin - 3 years, 5 months ago

ok,i will have a try.

Frost Constantin - 3 years, 5 months ago

and thank u

Frost Constantin - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...