Splendid Series

Geometry Level 5

a n = cos ( π 2 n + 1 ) cos ( 2 π 2 n + 1 ) cos ( 3 π 2 n + 1 ) cos ( ( 2 n + 1 ) π 2 n + 1 ) a_n=\cos\left(\frac{\pi}{2n+1}\right) \cos\left(\frac{2\pi}{2n+1}\right) \cos\left(\frac{3\pi}{2n+1}\right)\cdots \cos\left(\frac{(2n+1)\pi}{2n+1}\right)

Let a n a_n be defined as above for non-negative integer n n and S = a 0 + a 1 + a 2 + S=a_0+a_1+a_2+\cdots . What is 1 1 + S = ? \dfrac{1}{1+S}=\boxed{?}


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Aug 3, 2017

The Chebyshev polynomials of the second kind are defined by the recurrence relation U n + 1 ( x ) = 2 x U n ( x ) U n 1 ( x ) U 0 ( x ) = 1 , U 1 ( x ) = 2 x U_{n+1}(x) \; = \; 2xU_n(x) - U_{n-1}(x) \hspace{2cm} U_0(x) = 1\,,\, U_1(x) \; = \; 2x and are such that U n ( cos θ ) = sin ( ( n + 1 ) θ ) sin θ U_n(\cos\theta) \; = \; \frac{\sin((n+1)\theta)}{\sin\theta} Thus the zeros of U n ( x ) U_n(x) are cos ( k π n + 1 ) \cos \left(\tfrac{k\pi}{n+1}\right) for 1 k n 1 \le k \le n .

It is a simple induction that the leading term of U 2 n ( x ) U_{2n}(x) is 4 n x 2 n 4^nx^{2n} , and that U 2 n ( 0 ) = ( 1 ) n U_{2n}(0) = (-1)^n for all n 0 n \ge 0 . Since a n = k = 1 2 n + 1 cos ( k π 2 n + 1 ) = k = 1 2 n cos ( k π 2 n + 1 ) a_n \; =\; \prod_{k=1}^{2n+1} \cos \left(\frac{k\pi}{2n+1}\right) \; =\; -\prod_{k=1}^{2n} \cos\left(\frac{k\pi}{2n+1}\right) we see that a n a_n is minus the product of the zeros of U 2 n U_{2n} , and hence a n = U 2 n ( 0 ) 4 n = ( 1 ) n + 1 4 n a_n \; = \; - \frac{U_{2n}(0)}{4^n} \; = \; \frac{(-1)^{n+1}}{4^n} Thus we deduce that S = 4 5 S = -\tfrac45 , and hence 1 1 + S = 5 \frac{1}{1+S} = \boxed{5} .

Noel Lo
Aug 3, 2017

I, for one, am most comfortable with this method, though I'm sure there are others:

Note that cos ( ( 2 n + 1 ) π 2 n + 1 ) = cos π = 1 \cos{(\frac{(2n+1)\pi}{2n+1})}=\cos{\pi}=-1 so a n = cos ( π 2 n + 1 ) cos ( n π 2 n + 1 ) cos ( ( n + 1 ) π 2 n + 1 ) cos ( 2 n π 2 n + 1 ) ( 1 ) = cos ( π 2 n + 1 ) cos ( n π 2 n + 1 ) cos ( ( n + 1 ) π 2 n + 1 ) cos ( 2 n π 2 n + 1 ) a_n=\cos{(\frac{\pi}{2n+1})} \cdot \cdot \cdot \cos{(\frac{n\pi}{2n+1})} \cos{(\frac{(n+1)\pi}{2n+1})} \cdot \cdot \cdot \cos{(\frac{2n\pi}{2n+1})}(-1)=-\cos{(\frac{\pi}{2n+1})} \cdot \cdot \cdot \cos{(\frac{n\pi}{2n+1})} \cos{(\frac{(n+1)\pi}{2n+1})} \cdot \cdot \cdot \cos{(\frac{2n\pi}{2n+1})} .

Let's consider another series b n = sin ( π 2 n + 1 ) sin ( n π 2 n + 1 ) sin ( ( n + 1 ) n π 2 n + 1 ) sin ( 2 n π 2 n + 1 ) b_n=\sin{(\frac{\pi}{2n+1})} \cdot \cdot \cdot \sin{(\frac{n\pi}{2n+1})} \sin{(\frac{(n+1)n\pi}{2n+1})} \cdot \cdot \cdot\sin{(\frac{2n\pi}{2n+1})} . Multiplying them together gives us:

a n b n = sin ( π 2 n + 1 ) cos ( π 2 n + 1 ) sin ( n π 2 n + 1 ) cos ( n π 2 n + 1 ) sin ( ( n + 1 ) π 2 n + 1 ) cos ( ( n + 1 ) π 2 n + 1 ) sin ( 2 n π 2 n + 1 ) cos ( 2 n π 2 n + 1 ) a_nb_n=-\sin{(\frac{\pi}{2n+1})}\cos{(\frac{\pi}{2n+1})} \cdot \cdot \cdot \sin{(\frac{n\pi}{2n+1})} \cos{(\frac{n\pi}{2n+1})} \sin{(\frac{(n+1)\pi}{2n+1})} \cos{(\frac{(n+1)\pi}{2n+1})} \cdot \cdot \cdot \sin{(\frac{2n\pi}{2n+1})}\cos{(\frac{2n\pi}{2n+1})}

a n b n = 1 2 ( 2 sin ( π 2 n + 1 ) cos ( π 2 n + 1 ) ) 1 2 ( 2 sin ( n π 2 n + 1 ) cos ( n π 2 n + 1 ) ) 1 2 ( 2 sin ( ( n + 1 ) π 2 n + 1 ) cos ( ( n + 1 ) π 2 n + 1 ) ) 1 2 ( 2 sin ( 2 n π 2 n + 1 ) cos ( 2 n π 2 n + 1 ) ) a_nb_n=-\frac{1}{2}(2\sin{(\frac{\pi}{2n+1})}\cos{(\frac{\pi}{2n+1})}) \cdot \cdot \cdot \frac{1}{2}(2\sin{(\frac{n\pi}{2n+1})} \cos{(\frac{n\pi}{2n+1})}) \frac{1}{2}(2\sin{(\frac{(n+1)\pi}{2n+1})} \cos{(\frac{(n+1)\pi}{2n+1})}) \cdot \cdot \cdot \frac{1}{2}(2\sin{(\frac{2n\pi}{2n+1})}\cos{(\frac{2n\pi}{2n+1})})

a n b n = 1 2 sin ( 2 π 2 n + 1 ) 1 2 sin ( 2 n π 2 n + 1 ) 1 2 sin ( ( 2 n + 2 ) π 2 n + 1 ) 1 2 sin ( 4 n π 2 n + 1 ) a_nb_n=-\frac{1}{2}\sin{(\frac{2\pi}{2n+1})} \cdot \cdot \cdot \frac{1}{2}\sin{(\frac{2n\pi}{2n+1})} \frac{1}{2}\sin{(\frac{(2n+2)\pi}{2n+1})} \cdot \cdot \cdot \frac{1}{2}\sin{(\frac{4n\pi}{2n+1})}

a n b n = 1 2 2 n ( sin ( 2 π 2 n + 1 ) sin ( 2 n π 2 n + 1 ) sin ( ( 2 n + 2 ) π 2 n + 1 ) sin ( 4 n π 2 n + 1 ) a_nb_n=-\frac{1}{2^{2n}}(\sin{(\frac{2\pi}{2n+1})} \cdot \cdot \cdot \sin{(\frac{2n\pi}{2n+1})} \sin{(\frac{(2n+2)\pi}{2n+1})} \cdot \cdot \cdot \sin{(\frac{4n\pi}{2n+1})}

Note that sin ( ( 2 n + 2 ) π 2 n + 1 ) = sin ( ( 2 n + 2 ) π 2 n + 1 π ) = sin ( π 2 n + 1 ) \sin{(\frac{(2n+2)\pi}{2n+1})}=-\sin{(\frac{(2n+2)\pi}{2n+1}-\pi)}=-\sin{(\frac{\pi}{2n+1})} and sin ( 4 n π 2 n + 1 ) = sin ( 4 n π 2 n + 1 π ) = sin ( ( 2 n 1 ) π 2 n + 1 ) \sin{(\frac{4n\pi}{2n+1})}=-\sin{(\frac{4n\pi}{2n+1}-\pi)}=-\sin{(\frac{(2n-1)\pi}{2n+1})} .

Therefore:

a n b n = 1 2 2 n ( sin ( π 2 n + 1 ) ) ( sin ( 2 π 2 n + 1 ) ( sin ( ( 2 n 1 ) π 2 n + 1 ) ) sin ( 2 n π 2 n + 1 ) a_nb_n=-\frac{1}{2^{2n}} (-\sin{(\frac{\pi}{2n+1})}) (\sin{(\frac{2\pi}{2n+1})} \cdot \cdot \cdot (-\sin{(\frac{(2n-1)\pi}{2n+1})}) \sin{(\frac{2n\pi}{2n+1})}

a n b n = 1 2 2 n ( 1 ) n sin ( π 2 n + 1 ) sin ( 2 π 2 n + 1 ) sin ( ( 2 n 1 ) π 2 n + 1 ) sin ( 2 n π 2 n + 1 ) a_nb_n=-\frac{1}{2^{2n}} (-1)^{n} \sin{(\frac{\pi}{2n+1})} \sin{(\frac{2\pi}{2n+1})} \cdot \cdot \cdot \sin{(\frac{(2n-1)\pi}{2n+1})} \sin{(\frac{2n\pi}{2n+1})}

a n b n = 1 2 2 n ( 1 ) n b n a_nb_n=-\frac{1}{2^{2n}} (-1)^{n} b_n

a n = 1 2 2 n ( 1 ) n a_n=-\frac{1}{2^{2n}} (-1)^{n}

a n = ( 1 ) n ( 2 2 ) n a_n=-\frac{(-1)^{n}}{(2^2)^n}

a n = ( 1 2 2 ) n a_n=-(\frac{-1}{2^2})^n

a n = ( 1 4 ) n a_n=-(-\frac{1}{4})^n

So the initial term a 0 = ( 1 4 ) 0 = 1 a_0=-(-\frac{1}{4})^0=-1 and the common ratio is 1 4 -\frac{1}{4} . Therefore:

S = 1 1 ( 1 4 ) = 1 1 + 1 4 S=\frac{-1}{1-(-\frac{1}{4})}=\frac{-1}{1+\frac{1}{4}} and 1 + S = 1 + 1 1 + 1 4 = 1 4 1 + 1 4 1+S=1+\frac{-1}{1+\frac{1}{4}}=\frac{\frac{1}{4}}{1+\frac{1}{4}}

Then 1 1 + S = 1 + 1 4 1 4 = 4 + 1 = 5 \frac{1}{1+S}=\frac{1+\frac{1}{4}}{\frac{1}{4}}=4+1=\boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...