split up if u can [2]

Level pending

tan(x/2)sec(x)+tan(x/2^{2})sec(x/2)+tan(x/2^{3})sec(x/^{2})+...........................+tan(x/2^{n})sec(x/2^{n-1})

cotx-cot(x/2^{n}) cotx-tan(x/2^{n}) tanx-cot(x/2^{n}) tanx-tan(x/2^{n})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Nov 6, 2014

t a n x 2 s e c x = s i n x 2 c o s x 2 c o s x = s i n ( x x 2 c o s x 2 c o s x tan\frac{x}{2}secx = \frac{sin{x}{2}}{cos\frac{x}{2}cosx} = \frac{sin( x - \frac{x}{2}}{cos\frac{x}{2}cosx}

= s i n x c o s x 2 c o s x c o s x 2 c o s x 2 c o s x = \frac{sinxcos\frac{x}{2} - cosxcos\frac{x}{2}}{cos\frac{x}{2}cosx}

similarly 2nd term and so on ....

t a n x t a n x 2 + t a n x 2 t a n x 2 2 + t a n x 2 2 + . . . . . t a n x 2 n 1 t a n x 2 n tanx - tan\frac{x}{2} + tan\frac{x}{2} - tan\frac{x}{2^{2}} +tan\frac{x}{2^{2}} + ..... tan\frac{x}{2^{n-1}} - tan\frac{x}{2^{n}}

= t a n x t a n x 2 n = tanx - tan\frac{x}{2^{n}}

paste it paste it

hi @Atul Solanki type this as in your question screen , latex seems attractive

sorry just apply } this sign at the last mathematical term

U Z - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...