Splitting Pairs

Calculus Level 4

0 3 ( x 2 + 1 ) + 2 ( x + 1 ) x 2 + 1 ( x + ( x + 1 ) x 2 + 1 + x 2 + 1 ) 2 d x = A B \int_0^{\infty }\frac{3(x^2+1)+2(x+1)\sqrt{x^2+1}}{\left(x+(x+1)\sqrt{x^2+1}+x^2+1\right)^2}\ dx = \frac{A}{B}

The equation above holds true for coprime positive integers A A and B B . What is A + B A+B ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 10, 2018

Putting x = tan θ x = \tan\theta , the integral becomes I = 0 1 2 π 3 + 2 cos θ + 2 sin θ ( sin θ + 1 ) 2 ( cos θ + 1 ) 2 d θ = 0 1 2 π ( 1 ( 1 + sin θ ) 2 + 1 ( 1 + cos θ ) 2 ) d θ = 2 0 1 2 π d θ ( 1 + cos θ ) 2 = 1 2 0 1 2 π sec 4 1 2 θ d θ = [ tan 1 2 θ + 1 3 tan 3 1 2 θ ] 0 1 2 π = 4 3 \begin{aligned} I & = \; \int_0^{\frac12\pi} \frac{3 + 2\cos\theta + 2\sin\theta}{(\sin\theta+1)^2(\cos\theta+1)^2}\,d\theta \; = \; \int_0^{\frac12\pi} \left(\frac{1}{(1 + \sin\theta)^2} + \frac{1}{(1 + \cos\theta)^2}\right)\,d\theta \\ & = \; 2\int_0^{\frac12\pi} \frac{d\theta}{(1 + \cos\theta)^2} \; = \; \tfrac12\int_0^{\frac12\pi} \sec^4\tfrac12\theta\,d\theta \\ & = \; \Big[\tan\tfrac12\theta + \tfrac13\tan^3\tfrac12\theta\Big]_0^{\frac12\pi} \; = \; \tfrac43 \end{aligned} making the answer 4 + 3 = 7 4+3 = \boxed{7} .

@Mark Hennings Exactly the same!! the square root of (x^2 +1) motivated trigonometric substitution!!!

Aaghaz Mahajan - 3 years, 2 months ago

In the last step, it should be tan³ø/2 for the second term, the cube seems to be missing. Doesn't change the answer, but for the sake of completeness^

Rahul Sethi - 3 years, 2 months ago

Log in to reply

Thanks. Fixed.

Mark Hennings - 3 years, 2 months ago
Miles Koumouris
Apr 10, 2018

Let

I = 0 3 ( x 2 + 1 ) + 2 ( x + 1 ) x 2 + 1 ( x + ( x + 1 ) x 2 + 1 + x 2 + 1 ) 2 d x . I=\int_0^{\infty }\dfrac{3(x^2+1)+2(x+1)\sqrt{x^2+1}}{\left(x+(x+1)\sqrt{x^2+1}+x^2+1\right)^2}\; dx.

Observe that

x + ( x + 1 ) x 2 + 1 + x 2 + 1 = ( 1 + x 2 + 1 ) ( x + x 2 + 1 ) x+(x+1)\sqrt{x^2+1}+x^2+1=\left(1+\sqrt{x^2+1}\right)\left(x+\sqrt{x^2+1}\right)

and

3 ( x 2 + 1 ) + 2 ( x + 1 ) x 2 + 1 = ( 1 + x 2 + 1 ) 2 + ( x + x 2 + 1 ) 2 . 3(x^2+1)+2(x+1)\sqrt{x^2+1}=\left(1+\sqrt{x^2+1}\right)^2+\left(x+\sqrt{x^2+1}\right)^2.

Hence, I I can be split so that

I = 0 1 ( x + x 2 + 1 ) 2 + 1 ( 1 + x 2 + 1 ) 2 d x = 0 1 ( x + x 2 + 1 ) 2 d x = X + 0 1 ( 1 + x 2 + 1 ) 2 d x = Y . I=\int_0^{\infty }\dfrac{1}{\left(x+\sqrt{x^2+1}\right)^2}+\dfrac{1}{\left(1+\sqrt{x^2+1}\right)^2}\; dx = \overset{=X}{\overbrace{\int_0^{\infty }\dfrac{1}{\left(x+\sqrt{x^2+1}\right)^2}\; dx}} + \overset{=Y}{\overbrace{\int_0^{\infty }\dfrac{1}{\left(1+\sqrt{x^2+1}\right)^2}\; dx}}.

Substituting x = 1 u x=\frac1u gives X = 0 1 ( 1 u + ( 1 u ) 2 + 1 ) 2 × 1 u 2 d u = 0 u 2 u 2 ( 1 + u 2 + 1 ) 2 d u = 0 1 ( 1 + u 2 + 1 ) 2 d u = Y . \begin{aligned} X&=\int_{\infty }^0\dfrac{1}{\left(\frac{1}{u}+\sqrt{\left(\frac1u\right)^2+1}\right)^2}\times \dfrac{-1}{u^2}\; du\\ &=\int_{\infty }^0\dfrac{-u^2}{u^2\left(1+\sqrt{u^2+1}\right)^2}\; du\\ &=\int_0^{\infty }\dfrac{1}{\left(1+\sqrt{u^2+1}\right)^2}\; du\\ &=Y. \end{aligned} Then I = 2 X I=2X . Substituting x = 1 t 2 2 t x=\frac{1-t^2}{2t} gives X = 1 0 1 ( 1 t 2 2 t + 1 t 2 2 t + t ) 2 × ( 1 2 t 2 1 2 ) d t = 0 1 1 2 + t 2 2 d t = [ t 2 + t 3 6 ] 0 1 = 2 3 . \begin{aligned} X&=\int_1^0\dfrac{1}{\left(\frac{1-t^2}{2t}+\frac{1-t^2}{2t}+t\right)^2}\times \left(\dfrac{-1}{2t^2}-\dfrac12\right)\; dt\\ &=\int_0^1\dfrac{1}{2}+\dfrac{t^2}{2}\; dt\\ &=\left[\dfrac{t}{2}+\dfrac{t^3}{6}\right]^1_0\\ &=\dfrac{2}{3}. \end{aligned} Therefore, I = 2 × 2 3 = 4 3 I=2\times \frac{2}{3}=\frac{4}{3} , and hence A + B = 4 + 3 = 7 A+B=4+3=\boxed{7} .

You have used A A and B B for two numbers each. A = B = 2 3 A=B = \dfrac 23 and A = 4 A=4 and B = 3 B=3 .

Chew-Seong Cheong - 3 years, 2 months ago

Log in to reply

Thanks - it's fixed.

Miles Koumouris - 3 years, 2 months ago

It just took me some time to realise that the numerator and denominator fuctions are related

Syed Shahabudeen - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...