Given k = 1 ∏ 3 [ ∫ 0 ∞ x − 4 k e − ( k + 1 ) 4 x d x ] = b a π d c , what is the value of a + b + c + d ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
an easy prblm
Well, written. Kudos!
Alternate Solution:
Let, I = ∫ 0 ∞ x − 4 k e − ( k + 1 ) 4 x d x = M { e − ( k + 1 ) 4 x } ( 1 − 4 k )
Here M{f(x)}(s) is Mellin transform of f(x) over s.
Now using Maclaurin series, e − ( k + 1 ) 4 x = n = 0 ∑ ∞ n ! − ( k + 1 ) 4 n ( − x ) n
Therefore, by Ramanujan's Master Theorem , I = ( k + 1 ) k − 4 Γ ( 1 − 4 k )
Now taking the product we get: k = 1 ∏ 3 [ ∫ 0 ∞ x − 4 k e − ( k + 1 ) 4 x d x ] = 2 8 8 2 π 2 3
@Pi Han Goh another one!
Gamma functions and Euler's Reflection Formula!!!!!
Problem Loading...
Note Loading...
Set Loading...
These integrals can be solved fairly straightforward by using gamma function properties.
For k = 1 , we have ∫ 0 ∞ x − 4 1 e − 1 6 x d x = 8 1 ∫ 0 ∞ u − 4 1 e − u d u = 8 1 Γ ( 4 3 ) , ⇒ u = 1 6 x . For k = 2 , we have ∫ 0 ∞ x − 2 1 e − 8 1 x d x = 9 1 ∫ 0 ∞ v − 2 1 e − v d v = 9 1 Γ ( 2 1 ) , ⇒ v = 8 1 x . For k = 3 , we have ∫ 0 ∞ x − 4 3 e − 2 5 6 x d x = 4 1 ∫ 0 ∞ w − 4 3 e − w d w = 4 1 Γ ( 4 1 ) , ⇒ w = 2 5 6 x . Therefore k = 1 ∏ 3 [ ∫ 0 ∞ x − 4 k e − ( k + 1 ) 4 x d x ] = 8 1 Γ ( 4 3 ) ⋅ 9 1 Γ ( 2 1 ) ⋅ 4 1 Γ ( 4 1 ) = 9 1 Γ ( 2 1 ) ⋅ 8 1 Γ ( 4 3 ) ⋅ 4 1 Γ ( 4 1 ) . Note that : Γ ( 2 1 ) = π and from Euler's reflection formula , we have Γ ( x ) Γ ( 1 − x ) = sin ( π x ) π . Hence, k = 1 ∏ 3 [ ∫ 0 ∞ x − 4 k e − ( k + 1 ) 4 x d x ] = 9 1 π ⋅ 8 1 Γ ( 1 − 4 1 ) ⋅ 4 1 Γ ( 4 1 ) = 2 8 8 1 π ⋅ sin ( 4 1 π ) π = 2 8 8 2 π 2 3 . Thus, a + b + c + d = 2 + 2 8 8 + 3 + 2 = 2 9 5 .
# Q . E . D . #