Spot a pattern 2

Algebra Level 3

What is the value of 1 + 2 5 1 + 3 5 2 + 4 5 3 + 5 5 4 + ? 1+\dfrac {2}{5^1}+\dfrac {3}{5^2} +\dfrac{4}{5^3} + \dfrac{5}{5^4} + \cdots ?

16 25 \dfrac{16}{25} 5 4 \dfrac{5}{4} 1 25 \dfrac{1}{25} 25 16 \dfrac{25}{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Method 1:

Let S = 1 + 2 5 + 3 25 + 4 125 + . . . . = n = 1 n 5 n 1 . S = 1 + \dfrac{2}{5} + \dfrac{3}{25} + \dfrac{4}{125} + .... = \displaystyle\sum_{n=1}^{\infty} \dfrac{n}{5^{n-1}}.

Then S ( 1 5 + 1 25 + 1 125 + . . . . ) = 1 + 1 5 + 2 25 + 3 125 + . . . . = 1 + 1 5 ( 1 + 2 5 + 3 25 + . . . . ) S - \left(\dfrac{1}{5} + \dfrac{1}{25} + \dfrac{1}{125} + ....\right) = 1 + \dfrac{1}{5} + \dfrac{2}{25} + \dfrac{3}{125} + .... = 1 + \dfrac{1}{5}\left(1 + \dfrac{2}{5} + \dfrac{3}{25} + ....\right)

S ( 1 5 + 1 25 + 1 125 + . . . . ) = 1 + 1 5 S \Longrightarrow S - \left(\dfrac{1}{5} + \dfrac{1}{25} + \dfrac{1}{125} + ....\right) = 1 + \dfrac{1}{5}S , (A).

Now 1 5 + 1 25 + 1 125 + . . . . = 1 5 1 1 5 = 1 4 , \dfrac{1}{5} + \dfrac{1}{25} + \dfrac{1}{125} + .... = \dfrac{\dfrac{1}{5}}{1 - \dfrac{1}{5}} = \dfrac{1}{4}, so equation (A) becomes

S 1 4 = 1 + 1 5 S 4 5 S = 5 4 S = 25 16 . S - \dfrac{1}{4} = 1 + \dfrac{1}{5}S \Longrightarrow \dfrac{4}{5}S = \dfrac{5}{4} \Longrightarrow S = \boxed{\dfrac{25}{16}}.

Method 2:

In general we have that n = 0 x n = 1 1 x \displaystyle\sum_{n=0}^{\infty} x^{n} = \dfrac{1}{1 - x} for x < 1. |x| \lt 1.

Differentiating both sides, (the LHS term-by-term), gives us that

n = 1 n x n 1 = 1 ( 1 x ) 2 . \displaystyle\sum_{n=1}^{\infty} nx^{n-1} = \dfrac{1}{(1 - x)^{2}}.

But the given series is of the form of the sum on the LHS of this equation with x = 1 5 , x = \dfrac{1}{5}, and thus sums to

1 ( 1 1 5 ) 2 = 25 16 . \dfrac{1}{(1 - \frac{1}{5})^{2}} = \boxed{\dfrac{25}{16}}.

The first method was the same as I did, but the second method is nice.

Pranav Rao - 5 years, 6 months ago

You appear to have a typo on line 4, 5/4 should be 1/4

Peter Herbert - 5 years, 6 months ago

Log in to reply

Edit made; thanks for pointing that out. :)

Brian Charlesworth - 5 years, 6 months ago
Peter Herbert
Nov 29, 2015

Having forgotten everything about limits - It can't be 1/25 or 16/25 since these are less than 1, and the arithmetic sequence is clearly greater than 1 by the first term. Further, 5/4 - 1 = 1/4. However, the second term 2/5 is greater than 1/4, so the summation must be greater than 5/4. The only option left therefore is 25/16.

Jun Arro Estrella
Nov 16, 2015

This is an arithmetic-geometric series..

Michael Fuller
Dec 5, 2015

Let S = 1 + 2 5 1 + 3 5 2 + 4 5 3 + 5 5 4 + = n = 1 n 5 n 1 = 5 n = 1 n 5 n \displaystyle S=1+\cfrac { 2 }{ { 5 }^{ 1 } } +\cfrac { 3 }{ { 5 }^{ 2 } } +\cfrac { 4 }{ { 5 }^{ 3 } } +\cfrac { 5 }{ { 5 }^{ 4 } } +\dots =\sum _{ n=1 }^{ \infty }{ \cfrac { n }{ { 5 }^{ n-1 } } } = 5\sum _{ n=1 }^{ \infty }{ \cfrac { n }{ { 5 }^{ n } } } .

Therefore we have S 5 = 1 5 1 + 2 5 2 + 3 5 3 + 4 5 4 + S 25 = 1 5 2 + 2 5 3 + 3 5 4 + 4 5 5 + \cfrac { S }{ 5 } =\cfrac { 1 }{ { 5 }^{ 1 } } +\cfrac { 2 }{ { 5 }^{ 2 } } +\cfrac { 3 }{ { 5 }^{ 3 } } +\cfrac { 4 }{ { 5 }^{ 4 } } +\dots \\ \cfrac { S }{ 25 } =\cfrac { 1 }{ { 5 }^{ 2 } } +\cfrac { 2 }{ { 5 }^{ 3 } } +\cfrac { 3 }{ { 5 }^{ 4 } } +\cfrac { 4 }{ { 5 }^{ 5 } } +\dots

Subtracting the two, we get 4 S 25 = 1 5 1 + 1 5 2 + 1 5 3 + 1 5 4 + = 1 5 1 1 5 = 1 4 \cfrac { 4S }{ 25 } =\cfrac { 1 }{ { 5 }^{ 1 } } +\cfrac { 1 }{ { 5 }^{ 2 } } +\cfrac { 1 }{ { 5 }^{ 3 } } +\cfrac { 1 }{ { 5 }^{ 4 } } +\dots =\cfrac { \cfrac { 1 }{ 5 } }{ 1-\cfrac { 1 }{ 5 } } =\cfrac { 1 }{ 4 }

S = 25 16 \Rightarrow S= \large\color{#20A900}{\boxed{\dfrac{25}{16}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...