Spot the pattern

Algebra Level 3

Find the value of 1 1 3 + 1 2 4 + 1 3 5 + 1 4 6 + \dfrac {1}{1 \cdot 3}+\dfrac {1}{2 \cdot 4}+\dfrac {1}{3 \cdot 5}+\dfrac {1}{4 \cdot 6} +\ldots


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The n n th term of the series is a n = 1 n ( n + 2 ) = 1 2 ( 1 n 1 n + 2 ) . a_{n} = \dfrac{1}{n(n + 2)} = \dfrac{1}{2}\left(\dfrac{1}{n} - \dfrac{1}{n + 2}\right).

Thus n = 1 1 n ( n + 2 ) = 1 2 n = 1 ( 1 n 1 n + 2 ) = 1 2 ( 1 + 1 2 + n = 3 ( 1 n 1 n ) ) = 1 2 3 2 = 0.75 . \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n(n + 2)} = \dfrac{1}{2} \sum_{n=1}^{\infty} \left(\dfrac{1}{n} - \dfrac{1}{n + 2}\right) = \dfrac{1}{2}\left(1 + \dfrac{1}{2} + \sum_{n=3}^{\infty} \left(\dfrac{1}{n} - \dfrac{1}{n}\right)\right) = \dfrac{1}{2} * \dfrac{3}{2} = \boxed{0.75}.

GREAT SOLUTION!! same way

Department 8 - 5 years, 7 months ago

I did the same way. Nice solution

Shreyash Rai - 5 years, 6 months ago
Rohit Udaiwal
Nov 9, 2015

We have a general pattern: 1 n ( n + 2 ) = 1 2 ( 1 n 1 n + 2 ) \dfrac{1}{n (n+2)} \\ =\dfrac {1}{2}\left (\dfrac{1}{n}-\dfrac {1}{n+2}\right) Our expression becomes: 1 2 ( 1 1 1 3 ) + 1 2 ( 1 2 1 4 ) + 1 2 ( 1 3 1 5 ) = 1 2 ( 1 1 3 + 1 2 1 4 + 1 3 1 5 ) = 1 2 ( 1 + 1 2 ) = 3 4 \dfrac {1}{2}\left (\dfrac {1}{1}-\dfrac {1}{3}\right)+\dfrac {1}{2}\left (\dfrac {1}{2}-\dfrac {1}{4}\right)+\dfrac {1}{2}\left (\dfrac {1}{3}-\dfrac {1}{5}\right)\ldots \\ =\dfrac {1}{2}\left (1-\dfrac {1}{3}+\dfrac {1}{2}-\dfrac {1}{4}+\dfrac {1}{3}-\dfrac {1}{5}\ldots\right) \\ =\dfrac {1}{2}\left (1+\dfrac {1}{2}\right) \\ =\boxed {\dfrac {3}{4}}

Michael Fuller
Nov 13, 2015

The following sum can be expressed as r = 1 1 r ( r + 2 ) \displaystyle\sum _{ r=1 }^{ \infty }{ \frac { 1 }{ r\left( r+2 \right) } } . We will try to split this into two separate fractions:

Suppose 1 r ( r + 2 ) = A r + B r + 2 1 = A ( r + 2 ) + B r \dfrac { 1 }{ r\left( r+2 \right) } =\dfrac { A }{ r } +\dfrac { B }{ r+2 } \Rightarrow 1=A\left( r+2 \right) +Br .

Let r = 2 r=-2 . Then 1 = 2 B B = 1 2 1=-2B \Rightarrow B=-\dfrac { 1 }{ 2 } .

Let r = 0 r=0 . Then 1 = 2 A A = 1 2 1=2A \Rightarrow A=\dfrac { 1 }{ 2 } .

r = 1 1 r ( r + 2 ) = r = 1 1 2 r 1 2 ( r + 2 ) = ( 1 2 1 6 ) + ( 1 4 1 8 ) + ( 1 6 1 10 ) + ( 1 8 1 12 ) + = 1 2 + 1 4 = 3 4 \therefore ~~~ \sum _{ r=1 }^{ \infty }{ \frac { 1 }{ r\left( r+2 \right) } } = \sum _{ r=1 }^{ \infty }{ \frac { 1 }{ 2r } -\frac { 1 }{ 2\left( r+2 \right) } } \\ = \left( \frac { 1 }{ 2 } -\frac { 1 }{ 6 } \right) +\left( \frac { 1 }{ 4 } -\frac { 1 }{ 8 } \right) +\left( \frac { 1 }{ 6 } -\frac { 1 }{ 10 } \right) +\left(\ \frac { 1 }{ 8 } -\frac { 1 }{ 12 } \right) +\dots \\ = \frac { 1 }{ 2 } +\frac { 1 }{ 4 } \\ = ~~ \large \color{#20A900}{\boxed{\frac{3}{4}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...