y = ( x + x 2 − 1 ) n + ( x − x 2 − 1 ) n
For y as defined above, what is ( x 2 − 1 ) d x 2 d 2 y + x d x d y + n 2 y = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
y d x d y x 2 − 1 d x d y x 2 − 1 d x 2 d 2 y + x 2 − 1 x d x d y ( x 2 − 1 ) d x 2 d 2 y + x d x d y ⟹ ( x 2 − 1 ) d x 2 d 2 y + x d x d y + n 2 y = ( x + x 2 − 1 ) n + ( x − x 2 − 1 ) n = x 2 − 1 n [ ( x + x 2 − 1 ) n − ( x − x 2 − 1 ) n ] = n [ ( x + x 2 − 1 ) n − ( x − x 2 − 1 ) n ] = x 2 − 1 n 2 [ ( x + x 2 − 1 ) n + ( x − x 2 − 1 ) n ] = n 2 y = 2 n 2 y Differentiate both sides w.r.t x Multiply both sides with x 2 − 1 Differentiate both sides w.r.t x Multiply both sides with x 2 − 1 Add n 2 y on both sides
Problem Loading...
Note Loading...
Set Loading...
Want it simple?!
Put n = 1 then, y = ( x + x 2 − 1 ) 1 + ( x − x 2 − 1 ) 1 = 2 x
Then, d x d y = 2 ( 1 ) = 2 and d x 2 d 2 y = 2 ( 0 ) = 0
Therefore, we get ( x 2 − 1 ) d x 2 d 2 y + x d x d y + n 2 y = ( x 2 − 1 ) ( 0 ) + x ( 2 ) + ( 1 ) 2 ( 2 x ) = 2 × 2 x = 2 ( y )
We can write 2 ( y ) as 2 ( 1 ) 2 ( y ) = 2 ( n 2 ) ( y ) .Since, n = 1
Therefore the above expression can be simplified as 2 n 2 y