Spot the pattern

Calculus Level 4

y = ( x + x 2 1 ) n + ( x x 2 1 ) n \large y = \left(x + \sqrt{x^2 -1}\right)^n + \left(x - \sqrt{x^2 -1}\right)^n

For y y as defined above, what is ( x 2 1 ) d 2 y d x 2 + x d y d x + n 2 y = ? (x^2 - 1)\dfrac{d^2 y}{dx^2} + x\dfrac{dy}{dx} + n^2y = \ ?

2 n 2 y 2n^2y 0 2 n 2 y 2 -2n^2y^2 2 n 2 y -2n^2y 2 n 2 y 2 2n^2y^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Want it simple?!

Put n = 1 n = 1 then, y = ( x + x 2 1 ) 1 + ( x x 2 1 ) 1 = 2 x y = (x + \sqrt{x^2 - 1})^1 + (x - \sqrt{x^2 - 1})^1 = 2x

Then, d y d x = 2 ( 1 ) = 2 \dfrac {dy}{dx} = 2(1) = 2 and d 2 y d x 2 = 2 ( 0 ) = 0 \dfrac {d^2y}{dx^2} = 2(0) = 0

Therefore, we get ( x 2 1 ) d 2 y d x 2 + x d y d x + n 2 y = ( x 2 1 ) ( 0 ) + x ( 2 ) + ( 1 ) 2 ( 2 x ) = 2 × 2 x = 2 ( y ) (x^2 - 1)\dfrac {d^2y}{dx^2} + x\dfrac {dy}{dx} + n^2y = (x^2 - 1)(0) + x (2) + (1)^2 (2x) = 2\times 2x = 2(y)

We can write 2 ( y ) 2(y) as 2 ( 1 ) 2 ( y ) = 2 ( n 2 ) ( y ) 2(1)^2(y) = 2(n^2)(y) .Since, n = 1 n= 1

Therefore the above expression can be simplified as 2 n 2 y \boxed{2n^2y}

Chew-Seong Cheong
Oct 20, 2017

y = ( x + x 2 1 ) n + ( x x 2 1 ) n Differentiate both sides w.r.t x d y d x = n x 2 1 [ ( x + x 2 1 ) n ( x x 2 1 ) n ] Multiply both sides with x 2 1 x 2 1 d y d x = n [ ( x + x 2 1 ) n ( x x 2 1 ) n ] Differentiate both sides w.r.t x x 2 1 d 2 y d x 2 + x x 2 1 d y d x = n 2 x 2 1 [ ( x + x 2 1 ) n + ( x x 2 1 ) n ] Multiply both sides with x 2 1 ( x 2 1 ) d 2 y d x 2 + x d y d x = n 2 y Add n 2 y on both sides ( x 2 1 ) d 2 y d x 2 + x d y d x + n 2 y = 2 n 2 y \begin{aligned} y & = \left(x + \sqrt{x^2-1}\right)^n + \left(x - \sqrt{x^2-1}\right)^n & \small \color{#3D99F6} \text{Differentiate both sides w.r.t }x \\ \frac {dy}{dx} & = \frac n{\sqrt{x^2-1}}\left[ \left(x + \sqrt{x^2-1}\right)^n - \left(x - \sqrt{x^2-1}\right)^n\right] & \small \color{#3D99F6} \text{Multiply both sides with }\sqrt{x^2-1} \\ \sqrt{x^2-1}\frac {dy}{dx} & = n \left[ \left(x + \sqrt{x^2-1}\right)^n - \left(x - \sqrt{x^2-1}\right)^n\right] & \small \color{#3D99F6} \text{Differentiate both sides w.r.t }x \\ \sqrt{x^2-1}\frac {d^2y}{dx^2} + \frac x{\sqrt{x^2-1}}\frac {dy}{dx} & = \frac {n^2}{\sqrt{x^2-1}} \left[ \left(x + \sqrt{x^2-1}\right)^n + \left(x - \sqrt{x^2-1}\right)^n\right] & \small \color{#3D99F6} \text{Multiply both sides with }\sqrt{x^2-1} \\ (x^2-1)\frac {d^2y}{dx^2} + x\frac {dy}{dx} & = n^2y & \small \color{#3D99F6} \text{Add }n^2y \text{ on both sides} \\ \implies (x^2-1)\frac {d^2y}{dx^2} + x\frac {dy}{dx} + n^2y & = \boxed{2n^2y} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...