Spring Action

A particle of mass M M begins at rest at position x = x 0 x = x_0 at time t = 0 t = 0 . The particle moves according to the following Lagrangian until it reaches position x = 0 x = 0 for the first time at time t f t_f .

L ( t ) = 1 2 m x ˙ 2 1 2 k x 2 L (t) = \frac{1}{2} m \dot{x}^2 - \frac{1}{2} k x^2

Note that in the above equation, x x and x ˙ \dot{x} vary with time. The action for the path is:

S = 0 t f L ( t ) d t S = \int_0^{t_f} L (t) \, dt

Consider several alternate paths which preserve the starting and ending coordinates in space and time.

x 1 ( t ) = x ( t ) 2.0 ( t 2 t f t ) β x 2 ( t ) = x ( t ) 1.0 ( t 2 t f t ) β x 3 ( t ) = x ( t ) + 0.5 ( t 2 t f t ) β x 4 ( t ) = x ( t ) + 1.5 ( t 2 t f t ) β 0 t t f x_1 (t) = x (t) - 2.0 \, (t^2 - t_f \, t) \, \beta \\ x_2 (t) = x (t) - 1.0 \, (t^2 - t_f \, t) \, \beta \\ x_3 (t) = x (t) + 0.5 \, (t^2 - t_f \, t) \, \beta \\ x_4 (t) = x (t) + 1.5 \, (t^2 - t_f \, t) \, \beta \\ 0 \leq t \leq t_f

Let the actions for these alternate paths be S 1 S_1 , S 2 S_2 , S 3 S_3 , and S 4 S_4 . What is ( S + S 1 + S 2 + S 3 + S 4 ) (S + S_1 + S_2 + S_3 + S_4) ?

Bonus: Do these results match expectations?

Details and Assumptions:
1) M = 1 kg M = 1 \, \text{kg}
2) k = 5 N/m k = 5 \, \text{N/m}
3) x 0 = 1 m x_0 = 1 \, \text{m}
4) β = 1 m/s 2 \beta = 1 \, \text{m/s}^2


The answer is 0.3264.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 2, 2021

We note that the particle is subject to a Hooke's Law restoring force of magnitude k x kx , and hence performs S H M SHM . Thus x ( t ) = x 0 cos ω t 0 t t f = π 2 ω x(t) \; =\; x_0 \cos \omega t \hspace{2cm} 0 \le t \le t_f \; =\; \tfrac{\pi}{2\omega} where ω 2 = k m \omega^2 = \tfrac{k}{m} .

If y ( t ) y(t) is any function such that y ( 0 ) = y ( t f ) = 0 y(0)= y(t_f) = 0 , then the Principle of Least Action tells us that the function A ( u ) = 0 t f L x + u y ( t ) d t = 0 t f ( 1 2 m ( x ˙ ( t ) + u y ˙ ( t ) ) 2 1 2 k ( x ( t ) + u y ( t ) ) 2 ) d t = 0 t f ( 1 2 m x ˙ ( t ) 2 1 2 k x ( t ) 2 ) d t + u 0 t f ( m x ˙ ( t ) y ˙ ( t ) k x ( t ) y ( t ) ) d t + u 2 0 t f ( 1 2 m y ˙ ( t ) 2 1 2 k y ( t ) 2 ) d t = 0 t f L x ( t ) d t + u 0 t f ( m x ˙ ( t ) y ˙ ( t ) k x ( t ) y ( t ) ) d t + u 2 0 t f L y ( t ) d t \begin{aligned} A(u) & = \; \int_0^{t_f} L_{x + uy}(t)\,dt \; = \; \int_0^{t_f}\left(\tfrac12m\big(\dot{x}(t) + u\dot{y}(t)\big)^2 - \tfrac12k\big(x(t) + uy(t)\big)^2\right)\,dt \\ & = \; \int_0^{t_f}\left(\tfrac12m\dot{x}(t)^2 - \tfrac12kx(t)^2\right)\,dt + u\int_0^{t_f}\big(m\dot{x}(t)\dot{y}(t) - kx(t)y(t)\big)\,dt + u^2\int_0^{t_f}\big(\tfrac12m\dot{y}(t)^2 - \tfrac12ky(t)^2\big)\,dt \\ & = \; \int_0^{t_f}L_x(t)\,dt + u\int_0^{t_f}\big(m\dot{x}(t)\dot{y}(t) - kx(t)y(t)\big)\,dt + u^2 \int_0^{t_f}L_y(t)\,dt \end{aligned} is minimized at u = 0 u=0 , and hence that 0 t f ( m x ˙ ( t ) y ˙ ( t ) k x ( t ) y ( t ) ) d t = 0 \int_0^{t_f}\big(m\dot{x}(t)\dot{y}(t) - kx(t)y(t)\big)\,dt \; = \; 0 In this case we also have 0 t f L x ( t ) d t = 0 π 2 ω 1 2 m x 0 2 ω 2 cos 2 ω t d t = 0 \int_0^{t_f}L_x(t)\,dt \; = \; -\int_0^{\frac{\pi}{2\omega}} \tfrac12mx_0^2\omega^2\cos2\omega t\,dt \; = \; 0 and hence we have that A ( u ) = u 2 0 t y L y ( t ) d t A(u) \; = \; u^2\int_0^{t_y}L_y(t)\,dt In this particular case we have y ( t ) = t ( t f t ) y(t) = t(t_f-t) , and hence A ( u ) = m u 2 π 3 ( 40 π 2 ) 1920 ω 3 A(u) \; =\; \frac{mu^2\pi^3(40 - \pi^2)}{1920\omega^3} We are asked to evaluate S + S 1 + S 2 + S 3 + S 4 = A ( 0 ) + A ( 2 β ) + A ( β ) + A ( 1 2 β ) + A ( 3 2 β ) = m β 2 π 3 ( 40 π 2 ) 256 ω 3 S + S_1 + S_2 + S_3 + S_4 \; =\; A(0) + A(2\beta) + A(\beta) + A(-\tfrac12\beta) + A(-\tfrac32\beta) \; = \; \frac{m\beta^2\pi^3(40 - \pi^2)}{256\omega^3} in the case m = 1 m=1 , β = 1 \beta=1 , ω = 5 \omega = \sqrt{5} , and so we deduce that S + S 1 + S 2 + S 3 + S 4 = π 3 ( 40 π 2 ) 1280 5 = 0.3264070122... S + S_1 + S_2 + S_3 + S_4 \; = \; \frac{\pi^3(40 - \pi^2)}{1280\sqrt{5}} = \boxed{0.3264070122...}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...