Linear Quadratic Cubic Quartic

Algebra Level 4

a + b + c = 2 a 2 + b 2 + c 2 = 6 a 3 + b 3 + c 3 = 8 \begin{aligned} a \ \ + b \ + c \ \ &=& 2\\ a^{ 2 } + b^{ 2 } + c^{ 2 } &=& 6\\ a^{ 3 } + b^{ 3 } + c^{ 3 }&=& 8\\ \end{aligned} For complex numbers a , b , c a,b,c , we are given the system of equations above. Find the value of a 4 + b 4 + c 4 a^{ 4 } + b^{ 4 } + c^{ 4 } .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dieuler Oliveira
Jul 30, 2014

Think of a , b , c a, b, c as roots of a cubic polynomial, by Vieta's Formula, we know it has the following shape: p ( x ) = x 3 2 x 2 + α x + β p(x)=x^{3}-2x^{2}+\alpha x+\beta By using Newton's theorem, we calculate α \alpha and β \beta : S 2 2 S 1 + α S 0 + β S 1 = 0 S_{2}-2S_{1}+\alpha S_{0}+\beta S_{-1}=0 By using the reciprocal polynomial of p ( x ) p(x) , and Vieta's formulas, we calculate S 1 S_{-1} : p 1 ( x ) = β x 3 + α x 2 2 x + 1 p^{-1}(x)=\beta x^{3}+ \alpha x^{2}-2x+1 S 1 = α β \Rightarrow S_{-1}=\frac{-\alpha}{\beta} Therefore: 6 2.2 + α . 3 + β . α β = 0 6-2.2+\alpha.3+\beta . \frac{-\alpha}{\beta}=0 α = 1 \alpha=-1 Again, we calculate β \beta : S 3 2 S 2 S 1 + β S 0 = 0 S_{3}-2S_{2}-S_{1}+\beta S_{0}=0 8 2.6 2 + β . 3 = 0 8-2.6-2+\beta .3=0 β = 2 \beta=2 The polynomial is then: p ( x ) = x 3 2 x 2 x + 2 p(x)=x^{3}-2x^{2}-x+2 By using Newton's theorem: S 4 2 S 3 S 2 + 2 S 1 = 0 S_{4}-2S_{3}-S_{2}+2S_{1}=0 S 4 2.8 6 + 2.2 = 0 S_{4}-2.8-6+2.2=0 S 4 = 18. S_{4}=18.

4 = ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 [ a b + b c + c a ] = 6 + 2 [ a b + b c + c a ] a b + b c + c a = 1................. ( 1 ) 8 = a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 [ a b + b c + c a ] ) + 3 a b c = 2 ( 6 + 1 ) + 3 a b c 3 a b c = 8 14 a b c = 2............. ( 2 ) F r o m ( 1 ) 1 = ( a b + b c + c a ) 2 = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 ( a b 2 c + a b c 2 + a 2 b c ) = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 a b c ( a + b + c ) = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 ( 2 ) 2. a 2 b 2 + b 2 c 2 + c 2 a 2 = 9..... ( 3 ) 36 = ( a 2 + b 2 + c 2 ) 2 = a 4 + b 4 + c 4 + 2 [ a 2 b 2 + b 2 c 2 + c 2 a 2 ] F r o m ( 3 ) 36 = a 4 + b 4 + c 4 + 2 9 a 4 + b 4 + c 4 = 1 4=(a+b+c)^2 = a^2+b^2+c^2+2[ ab+bc+ca ]=6+2[ ab+bc+ca ]\\\implies~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ab+bc+ca = - 1.................(1)\\~~\\8=a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2- [ ab+bc+ca ])+3abc\\=2*(6+1)+3abc~~~\implies~3abc=8-14~~~~~~~~~~~~~~~~abc=-2.............(2)\\From (1)\\1=(ab+bc+ca )^2= a^2b^2+b^2c^2+c^2a^2+2(ab^2c+abc^2+a^2bc)\\=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)\\=a^2b^2+b^2c^2 +c^2a^2+2(-2)2.~~~~~\therefore a^2b^2+b^2c^2+c^2a^2=9.....(3)\\ ~~\\36=(a^2+b^2+c^2)^2 = a^4+b^4+c^4+2[a^2b^2+b^2c^2+c^2a^2]\\From (3)~~~~~~~~~ 36= a^4+b^4+c^4+2*9~ ~~~~~\implies~a^4+b^4+c^4 = ~~~~\boxed{\color{#D61F06}{\large 1}} \\~~\\ For those who are familiar with c y l a n d c y l \large \text{ For those who are familiar with} \sum_{cyl}~~and~~\prod_{cyl}

4 = ( c y l a ) 2 = c y l a 2 + c y l a b = 6 + 2 c y l a b c y l a b = 1.. ( 1 ) 8 = c y l a 3 = c y l a ( c y l a 2 c y l a b ) + 3 c y l a = 2 ( 6 + 1 ) + 3 c y l a c y l a = 2... ( 2 ) F r o m ( 1 ) 1 = ( c y l a b ) 2 = c y l a 2 b 2 + 2 c y l a 2 b c = c y l a 2 b 2 + 2 c y l a c y l a 2 b 2 = c y l a 2 b 2 + 2 ( 2 ) 2 c y l a 2 b 2 = 9.. ( 3 ) F r o m ( 3 ) 36 = ( c y l a 2 ) 2 = c y l a 4 + 2 c y l a 2 b 2 = c y l a 4 + 2 9 c y l a 4 = 1 4=(\sum_{cyl}a)^2=\sum_{cyl}a^2+\sum_{cyl}ab=6+2\sum_{cyl}ab~~\\\implies~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sum_{cyl}ab=-1..(1)\\~~\\8=\sum_{cyl}a^3=\sum_{cyl}a*(\sum_{cyl}a^2-\sum_{cyl}ab ) + 3\prod_{cyl}a \\=2*( 6+ 1)+3\prod_{cyl}a~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~\therefore~~~~~~~\prod_{cyl}a= -2...(2)\\~~\\From ~(1)~~1=(\sum_{cyl}ab)^2=\sum_{cyl}a^2b^2+2*\sum_{cyl}a^2bc \\ =\sum_{cyl}a^2b^2+2\prod_{cyl}a*\sum_{cyl}a^2b^2= \sum_{cyl}a^2b^2+2*(-2)*2~~\\\implies~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sum_{cyl}a^2b^2=9..(3)\\~~\\From ~(3)~~36=(\sum_{cyl}a^2)^2=\sum_{cyl}a^4+2\sum_{cyl}a^2b^2=\sum_{cyl}a^4+2*9\\\therefore~~\sum_{cyl}a^4= ~~~~~~~~~~~~~~~~~~~~~~~ \boxed{\color{#D61F06}{\large 1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...