a + b + c a 2 + b 2 + c 2 a 3 + b 3 + c 3 = = = 2 6 8 For complex numbers a , b , c , we are given the system of equations above. Find the value of a 4 + b 4 + c 4 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
4 = ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 [ a b + b c + c a ] = 6 + 2 [ a b + b c + c a ] ⟹ a b + b c + c a = − 1 . . . . . . . . . . . . . . . . . ( 1 ) 8 = a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 − [ a b + b c + c a ] ) + 3 a b c = 2 ∗ ( 6 + 1 ) + 3 a b c ⟹ 3 a b c = 8 − 1 4 a b c = − 2 . . . . . . . . . . . . . ( 2 ) F r o m ( 1 ) 1 = ( a b + b c + c a ) 2 = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 ( a b 2 c + a b c 2 + a 2 b c ) = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 a b c ( a + b + c ) = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 ( − 2 ) 2 . ∴ a 2 b 2 + b 2 c 2 + c 2 a 2 = 9 . . . . . ( 3 ) 3 6 = ( a 2 + b 2 + c 2 ) 2 = a 4 + b 4 + c 4 + 2 [ a 2 b 2 + b 2 c 2 + c 2 a 2 ] F r o m ( 3 ) 3 6 = a 4 + b 4 + c 4 + 2 ∗ 9 ⟹ a 4 + b 4 + c 4 = 1 For those who are familiar with ∑ c y l a n d ∏ c y l
4 = ( ∑ c y l a ) 2 = ∑ c y l a 2 + ∑ c y l a b = 6 + 2 ∑ c y l a b ⟹ ∑ c y l a b = − 1 . . ( 1 ) 8 = ∑ c y l a 3 = ∑ c y l a ∗ ( ∑ c y l a 2 − ∑ c y l a b ) + 3 ∏ c y l a = 2 ∗ ( 6 + 1 ) + 3 ∏ c y l a ∴ ∏ c y l a = − 2 . . . ( 2 ) F r o m ( 1 ) 1 = ( ∑ c y l a b ) 2 = ∑ c y l a 2 b 2 + 2 ∗ ∑ c y l a 2 b c = ∑ c y l a 2 b 2 + 2 ∏ c y l a ∗ ∑ c y l a 2 b 2 = ∑ c y l a 2 b 2 + 2 ∗ ( − 2 ) ∗ 2 ⟹ ∑ c y l a 2 b 2 = 9 . . ( 3 ) F r o m ( 3 ) 3 6 = ( ∑ c y l a 2 ) 2 = ∑ c y l a 4 + 2 ∑ c y l a 2 b 2 = ∑ c y l a 4 + 2 ∗ 9 ∴ ∑ c y l a 4 = 1
Problem Loading...
Note Loading...
Set Loading...
Think of a , b , c as roots of a cubic polynomial, by Vieta's Formula, we know it has the following shape: p ( x ) = x 3 − 2 x 2 + α x + β By using Newton's theorem, we calculate α and β : S 2 − 2 S 1 + α S 0 + β S − 1 = 0 By using the reciprocal polynomial of p ( x ) , and Vieta's formulas, we calculate S − 1 : p − 1 ( x ) = β x 3 + α x 2 − 2 x + 1 ⇒ S − 1 = β − α Therefore: 6 − 2 . 2 + α . 3 + β . β − α = 0 α = − 1 Again, we calculate β : S 3 − 2 S 2 − S 1 + β S 0 = 0 8 − 2 . 6 − 2 + β . 3 = 0 β = 2 The polynomial is then: p ( x ) = x 3 − 2 x 2 − x + 2 By using Newton's theorem: S 4 − 2 S 3 − S 2 + 2 S 1 = 0 S 4 − 2 . 8 − 6 + 2 . 2 = 0 S 4 = 1 8 .