Special Geometric Sum of i \text{i}

Algebra Level 2

i + i 2 + i 3 + + i 2000 = ? \text{i}+\text{i}^2+\text{i}^3+\cdots+\text{i}^{2000}=?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Edward Christian
Sep 21, 2019

(1) i 1 = i (2) i 2 = 1 (3) i 3 = i (4) i 4 = 1 \begin{aligned} \text{(1) i}^1 &=\text{i} \\ \text{(2) i}^2 &=-1 \\ \text{(3) i}^3 &=-\text{i} \\ \text{(4) i}^4 &=1 \\ \end{aligned} ( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) = 0 , 2000 4 = 500 \because (1)+(2)+(3)+(4)=0, \dfrac{2000}{4}=500 i + i 2 + i 3 + + i 2000 = 0 \therefore \text{i}+\text{i}^2+\text{i}^3+\cdots+\text{i}^{2000}=0

Chew-Seong Cheong
Sep 23, 2019

z = i + i 2 + i 3 + + i 2000 It is a geometric sum = i × i 2000 1 i 1 Note that i 4 = 1 = i × 1 400 1 i 1 = 0 \begin{aligned} z & = i + i^2 + i^3 + \cdots + i^{2000} & \small \color{#3D99F6} \text{It is a geometric sum} \\ & = i \times \frac {{\color{#3D99F6}i^{2000}}-1}{i-1} & \small \color{#3D99F6} \text{Note that }i^4 = 1 \\ & = i \times \frac {{\color{#3D99F6}1^{400}}-1}{i-1} \\ & = \boxed 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...